Step |
Hyp |
Ref |
Expression |
1 |
|
dsmmval.b |
⊢ 𝐵 = { 𝑓 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ∣ { 𝑥 ∈ dom 𝑅 ∣ ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } ∈ Fin } |
2 |
|
elex |
⊢ ( 𝑅 ∈ 𝑉 → 𝑅 ∈ V ) |
3 |
|
oveq12 |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → ( 𝑠 Xs 𝑟 ) = ( 𝑆 Xs 𝑅 ) ) |
4 |
|
eqid |
⊢ ( 𝑠 Xs 𝑟 ) = ( 𝑠 Xs 𝑟 ) |
5 |
|
vex |
⊢ 𝑠 ∈ V |
6 |
5
|
a1i |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → 𝑠 ∈ V ) |
7 |
|
vex |
⊢ 𝑟 ∈ V |
8 |
7
|
a1i |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → 𝑟 ∈ V ) |
9 |
|
eqid |
⊢ ( Base ‘ ( 𝑠 Xs 𝑟 ) ) = ( Base ‘ ( 𝑠 Xs 𝑟 ) ) |
10 |
|
eqidd |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → dom 𝑟 = dom 𝑟 ) |
11 |
4 6 8 9 10
|
prdsbas |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → ( Base ‘ ( 𝑠 Xs 𝑟 ) ) = X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ) |
12 |
3
|
fveq2d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → ( Base ‘ ( 𝑠 Xs 𝑟 ) ) = ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ) |
13 |
11 12
|
eqtr3d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) = ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ) |
14 |
|
simpr |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → 𝑟 = 𝑅 ) |
15 |
14
|
dmeqd |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → dom 𝑟 = dom 𝑅 ) |
16 |
14
|
fveq1d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → ( 𝑟 ‘ 𝑥 ) = ( 𝑅 ‘ 𝑥 ) ) |
17 |
16
|
fveq2d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → ( 0g ‘ ( 𝑟 ‘ 𝑥 ) ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
18 |
17
|
neeq2d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → ( ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑟 ‘ 𝑥 ) ) ↔ ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) |
19 |
15 18
|
rabeqbidv |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → { 𝑥 ∈ dom 𝑟 ∣ ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑟 ‘ 𝑥 ) ) } = { 𝑥 ∈ dom 𝑅 ∣ ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } ) |
20 |
19
|
eleq1d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → ( { 𝑥 ∈ dom 𝑟 ∣ ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑟 ‘ 𝑥 ) ) } ∈ Fin ↔ { 𝑥 ∈ dom 𝑅 ∣ ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } ∈ Fin ) ) |
21 |
13 20
|
rabeqbidv |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → { 𝑓 ∈ X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ∣ { 𝑥 ∈ dom 𝑟 ∣ ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑟 ‘ 𝑥 ) ) } ∈ Fin } = { 𝑓 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ∣ { 𝑥 ∈ dom 𝑅 ∣ ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } ∈ Fin } ) |
22 |
21 1
|
eqtr4di |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → { 𝑓 ∈ X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ∣ { 𝑥 ∈ dom 𝑟 ∣ ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑟 ‘ 𝑥 ) ) } ∈ Fin } = 𝐵 ) |
23 |
3 22
|
oveq12d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → ( ( 𝑠 Xs 𝑟 ) ↾s { 𝑓 ∈ X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ∣ { 𝑥 ∈ dom 𝑟 ∣ ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑟 ‘ 𝑥 ) ) } ∈ Fin } ) = ( ( 𝑆 Xs 𝑅 ) ↾s 𝐵 ) ) |
24 |
|
df-dsmm |
⊢ ⊕m = ( 𝑠 ∈ V , 𝑟 ∈ V ↦ ( ( 𝑠 Xs 𝑟 ) ↾s { 𝑓 ∈ X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ∣ { 𝑥 ∈ dom 𝑟 ∣ ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑟 ‘ 𝑥 ) ) } ∈ Fin } ) ) |
25 |
|
ovex |
⊢ ( ( 𝑆 Xs 𝑅 ) ↾s 𝐵 ) ∈ V |
26 |
23 24 25
|
ovmpoa |
⊢ ( ( 𝑆 ∈ V ∧ 𝑅 ∈ V ) → ( 𝑆 ⊕m 𝑅 ) = ( ( 𝑆 Xs 𝑅 ) ↾s 𝐵 ) ) |
27 |
|
reldmdsmm |
⊢ Rel dom ⊕m |
28 |
27
|
ovprc1 |
⊢ ( ¬ 𝑆 ∈ V → ( 𝑆 ⊕m 𝑅 ) = ∅ ) |
29 |
|
ress0 |
⊢ ( ∅ ↾s 𝐵 ) = ∅ |
30 |
28 29
|
eqtr4di |
⊢ ( ¬ 𝑆 ∈ V → ( 𝑆 ⊕m 𝑅 ) = ( ∅ ↾s 𝐵 ) ) |
31 |
|
reldmprds |
⊢ Rel dom Xs |
32 |
31
|
ovprc1 |
⊢ ( ¬ 𝑆 ∈ V → ( 𝑆 Xs 𝑅 ) = ∅ ) |
33 |
32
|
oveq1d |
⊢ ( ¬ 𝑆 ∈ V → ( ( 𝑆 Xs 𝑅 ) ↾s 𝐵 ) = ( ∅ ↾s 𝐵 ) ) |
34 |
30 33
|
eqtr4d |
⊢ ( ¬ 𝑆 ∈ V → ( 𝑆 ⊕m 𝑅 ) = ( ( 𝑆 Xs 𝑅 ) ↾s 𝐵 ) ) |
35 |
34
|
adantr |
⊢ ( ( ¬ 𝑆 ∈ V ∧ 𝑅 ∈ V ) → ( 𝑆 ⊕m 𝑅 ) = ( ( 𝑆 Xs 𝑅 ) ↾s 𝐵 ) ) |
36 |
26 35
|
pm2.61ian |
⊢ ( 𝑅 ∈ V → ( 𝑆 ⊕m 𝑅 ) = ( ( 𝑆 Xs 𝑅 ) ↾s 𝐵 ) ) |
37 |
2 36
|
syl |
⊢ ( 𝑅 ∈ 𝑉 → ( 𝑆 ⊕m 𝑅 ) = ( ( 𝑆 Xs 𝑅 ) ↾s 𝐵 ) ) |