| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dsmmval.b | ⊢ 𝐵  =  { 𝑓  ∈  ( Base ‘ ( 𝑆 Xs 𝑅 ) )  ∣  { 𝑥  ∈  dom  𝑅  ∣  ( 𝑓 ‘ 𝑥 )  ≠  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) }  ∈  Fin } | 
						
							| 2 |  | elex | ⊢ ( 𝑅  ∈  𝑉  →  𝑅  ∈  V ) | 
						
							| 3 |  | oveq12 | ⊢ ( ( 𝑠  =  𝑆  ∧  𝑟  =  𝑅 )  →  ( 𝑠 Xs 𝑟 )  =  ( 𝑆 Xs 𝑅 ) ) | 
						
							| 4 |  | eqid | ⊢ ( 𝑠 Xs 𝑟 )  =  ( 𝑠 Xs 𝑟 ) | 
						
							| 5 |  | vex | ⊢ 𝑠  ∈  V | 
						
							| 6 | 5 | a1i | ⊢ ( ( 𝑠  =  𝑆  ∧  𝑟  =  𝑅 )  →  𝑠  ∈  V ) | 
						
							| 7 |  | vex | ⊢ 𝑟  ∈  V | 
						
							| 8 | 7 | a1i | ⊢ ( ( 𝑠  =  𝑆  ∧  𝑟  =  𝑅 )  →  𝑟  ∈  V ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ ( 𝑠 Xs 𝑟 ) )  =  ( Base ‘ ( 𝑠 Xs 𝑟 ) ) | 
						
							| 10 |  | eqidd | ⊢ ( ( 𝑠  =  𝑆  ∧  𝑟  =  𝑅 )  →  dom  𝑟  =  dom  𝑟 ) | 
						
							| 11 | 4 6 8 9 10 | prdsbas | ⊢ ( ( 𝑠  =  𝑆  ∧  𝑟  =  𝑅 )  →  ( Base ‘ ( 𝑠 Xs 𝑟 ) )  =  X 𝑥  ∈  dom  𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) ) | 
						
							| 12 | 3 | fveq2d | ⊢ ( ( 𝑠  =  𝑆  ∧  𝑟  =  𝑅 )  →  ( Base ‘ ( 𝑠 Xs 𝑟 ) )  =  ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ) | 
						
							| 13 | 11 12 | eqtr3d | ⊢ ( ( 𝑠  =  𝑆  ∧  𝑟  =  𝑅 )  →  X 𝑥  ∈  dom  𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) )  =  ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ) | 
						
							| 14 |  | simpr | ⊢ ( ( 𝑠  =  𝑆  ∧  𝑟  =  𝑅 )  →  𝑟  =  𝑅 ) | 
						
							| 15 | 14 | dmeqd | ⊢ ( ( 𝑠  =  𝑆  ∧  𝑟  =  𝑅 )  →  dom  𝑟  =  dom  𝑅 ) | 
						
							| 16 | 14 | fveq1d | ⊢ ( ( 𝑠  =  𝑆  ∧  𝑟  =  𝑅 )  →  ( 𝑟 ‘ 𝑥 )  =  ( 𝑅 ‘ 𝑥 ) ) | 
						
							| 17 | 16 | fveq2d | ⊢ ( ( 𝑠  =  𝑆  ∧  𝑟  =  𝑅 )  →  ( 0g ‘ ( 𝑟 ‘ 𝑥 ) )  =  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) | 
						
							| 18 | 17 | neeq2d | ⊢ ( ( 𝑠  =  𝑆  ∧  𝑟  =  𝑅 )  →  ( ( 𝑓 ‘ 𝑥 )  ≠  ( 0g ‘ ( 𝑟 ‘ 𝑥 ) )  ↔  ( 𝑓 ‘ 𝑥 )  ≠  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) | 
						
							| 19 | 15 18 | rabeqbidv | ⊢ ( ( 𝑠  =  𝑆  ∧  𝑟  =  𝑅 )  →  { 𝑥  ∈  dom  𝑟  ∣  ( 𝑓 ‘ 𝑥 )  ≠  ( 0g ‘ ( 𝑟 ‘ 𝑥 ) ) }  =  { 𝑥  ∈  dom  𝑅  ∣  ( 𝑓 ‘ 𝑥 )  ≠  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } ) | 
						
							| 20 | 19 | eleq1d | ⊢ ( ( 𝑠  =  𝑆  ∧  𝑟  =  𝑅 )  →  ( { 𝑥  ∈  dom  𝑟  ∣  ( 𝑓 ‘ 𝑥 )  ≠  ( 0g ‘ ( 𝑟 ‘ 𝑥 ) ) }  ∈  Fin  ↔  { 𝑥  ∈  dom  𝑅  ∣  ( 𝑓 ‘ 𝑥 )  ≠  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) }  ∈  Fin ) ) | 
						
							| 21 | 13 20 | rabeqbidv | ⊢ ( ( 𝑠  =  𝑆  ∧  𝑟  =  𝑅 )  →  { 𝑓  ∈  X 𝑥  ∈  dom  𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) )  ∣  { 𝑥  ∈  dom  𝑟  ∣  ( 𝑓 ‘ 𝑥 )  ≠  ( 0g ‘ ( 𝑟 ‘ 𝑥 ) ) }  ∈  Fin }  =  { 𝑓  ∈  ( Base ‘ ( 𝑆 Xs 𝑅 ) )  ∣  { 𝑥  ∈  dom  𝑅  ∣  ( 𝑓 ‘ 𝑥 )  ≠  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) }  ∈  Fin } ) | 
						
							| 22 | 21 1 | eqtr4di | ⊢ ( ( 𝑠  =  𝑆  ∧  𝑟  =  𝑅 )  →  { 𝑓  ∈  X 𝑥  ∈  dom  𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) )  ∣  { 𝑥  ∈  dom  𝑟  ∣  ( 𝑓 ‘ 𝑥 )  ≠  ( 0g ‘ ( 𝑟 ‘ 𝑥 ) ) }  ∈  Fin }  =  𝐵 ) | 
						
							| 23 | 3 22 | oveq12d | ⊢ ( ( 𝑠  =  𝑆  ∧  𝑟  =  𝑅 )  →  ( ( 𝑠 Xs 𝑟 )  ↾s  { 𝑓  ∈  X 𝑥  ∈  dom  𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) )  ∣  { 𝑥  ∈  dom  𝑟  ∣  ( 𝑓 ‘ 𝑥 )  ≠  ( 0g ‘ ( 𝑟 ‘ 𝑥 ) ) }  ∈  Fin } )  =  ( ( 𝑆 Xs 𝑅 )  ↾s  𝐵 ) ) | 
						
							| 24 |  | df-dsmm | ⊢  ⊕m   =  ( 𝑠  ∈  V ,  𝑟  ∈  V  ↦  ( ( 𝑠 Xs 𝑟 )  ↾s  { 𝑓  ∈  X 𝑥  ∈  dom  𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) )  ∣  { 𝑥  ∈  dom  𝑟  ∣  ( 𝑓 ‘ 𝑥 )  ≠  ( 0g ‘ ( 𝑟 ‘ 𝑥 ) ) }  ∈  Fin } ) ) | 
						
							| 25 |  | ovex | ⊢ ( ( 𝑆 Xs 𝑅 )  ↾s  𝐵 )  ∈  V | 
						
							| 26 | 23 24 25 | ovmpoa | ⊢ ( ( 𝑆  ∈  V  ∧  𝑅  ∈  V )  →  ( 𝑆  ⊕m  𝑅 )  =  ( ( 𝑆 Xs 𝑅 )  ↾s  𝐵 ) ) | 
						
							| 27 |  | reldmdsmm | ⊢ Rel  dom   ⊕m | 
						
							| 28 | 27 | ovprc1 | ⊢ ( ¬  𝑆  ∈  V  →  ( 𝑆  ⊕m  𝑅 )  =  ∅ ) | 
						
							| 29 |  | ress0 | ⊢ ( ∅  ↾s  𝐵 )  =  ∅ | 
						
							| 30 | 28 29 | eqtr4di | ⊢ ( ¬  𝑆  ∈  V  →  ( 𝑆  ⊕m  𝑅 )  =  ( ∅  ↾s  𝐵 ) ) | 
						
							| 31 |  | reldmprds | ⊢ Rel  dom  Xs | 
						
							| 32 | 31 | ovprc1 | ⊢ ( ¬  𝑆  ∈  V  →  ( 𝑆 Xs 𝑅 )  =  ∅ ) | 
						
							| 33 | 32 | oveq1d | ⊢ ( ¬  𝑆  ∈  V  →  ( ( 𝑆 Xs 𝑅 )  ↾s  𝐵 )  =  ( ∅  ↾s  𝐵 ) ) | 
						
							| 34 | 30 33 | eqtr4d | ⊢ ( ¬  𝑆  ∈  V  →  ( 𝑆  ⊕m  𝑅 )  =  ( ( 𝑆 Xs 𝑅 )  ↾s  𝐵 ) ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( ¬  𝑆  ∈  V  ∧  𝑅  ∈  V )  →  ( 𝑆  ⊕m  𝑅 )  =  ( ( 𝑆 Xs 𝑅 )  ↾s  𝐵 ) ) | 
						
							| 36 | 26 35 | pm2.61ian | ⊢ ( 𝑅  ∈  V  →  ( 𝑆  ⊕m  𝑅 )  =  ( ( 𝑆 Xs 𝑅 )  ↾s  𝐵 ) ) | 
						
							| 37 | 2 36 | syl | ⊢ ( 𝑅  ∈  𝑉  →  ( 𝑆  ⊕m  𝑅 )  =  ( ( 𝑆 Xs 𝑅 )  ↾s  𝐵 ) ) |