Step |
Hyp |
Ref |
Expression |
1 |
|
dstregt0.1 |
⊢ ( 𝜑 → 𝐴 ∈ ( ℂ ∖ ℝ ) ) |
2 |
1
|
eldifad |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
3 |
2
|
imcld |
⊢ ( 𝜑 → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
4 |
3
|
recnd |
⊢ ( 𝜑 → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
5 |
1
|
eldifbd |
⊢ ( 𝜑 → ¬ 𝐴 ∈ ℝ ) |
6 |
|
reim0b |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ℝ ↔ ( ℑ ‘ 𝐴 ) = 0 ) ) |
7 |
2 6
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ↔ ( ℑ ‘ 𝐴 ) = 0 ) ) |
8 |
5 7
|
mtbid |
⊢ ( 𝜑 → ¬ ( ℑ ‘ 𝐴 ) = 0 ) |
9 |
8
|
neqned |
⊢ ( 𝜑 → ( ℑ ‘ 𝐴 ) ≠ 0 ) |
10 |
4 9
|
absrpcld |
⊢ ( 𝜑 → ( abs ‘ ( ℑ ‘ 𝐴 ) ) ∈ ℝ+ ) |
11 |
10
|
rphalfcld |
⊢ ( 𝜑 → ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) ∈ ℝ+ ) |
12 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝐴 ∈ ℂ ) |
13 |
|
recn |
⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℂ ) |
14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℂ ) |
15 |
12 14
|
imsubd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ℑ ‘ ( 𝐴 − 𝑦 ) ) = ( ( ℑ ‘ 𝐴 ) − ( ℑ ‘ 𝑦 ) ) ) |
16 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) |
17 |
16
|
reim0d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ℑ ‘ 𝑦 ) = 0 ) |
18 |
17
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( ℑ ‘ 𝐴 ) − ( ℑ ‘ 𝑦 ) ) = ( ( ℑ ‘ 𝐴 ) − 0 ) ) |
19 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
20 |
19
|
subid1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( ℑ ‘ 𝐴 ) − 0 ) = ( ℑ ‘ 𝐴 ) ) |
21 |
15 18 20
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ℑ ‘ 𝐴 ) = ( ℑ ‘ ( 𝐴 − 𝑦 ) ) ) |
22 |
21
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( abs ‘ ( ℑ ‘ 𝐴 ) ) = ( abs ‘ ( ℑ ‘ ( 𝐴 − 𝑦 ) ) ) ) |
23 |
22
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) = ( ( abs ‘ ( ℑ ‘ ( 𝐴 − 𝑦 ) ) ) / 2 ) ) |
24 |
21 19
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ℑ ‘ ( 𝐴 − 𝑦 ) ) ∈ ℂ ) |
25 |
24
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( abs ‘ ( ℑ ‘ ( 𝐴 − 𝑦 ) ) ) ∈ ℝ ) |
26 |
25
|
rehalfcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( abs ‘ ( ℑ ‘ ( 𝐴 − 𝑦 ) ) ) / 2 ) ∈ ℝ ) |
27 |
12 14
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐴 − 𝑦 ) ∈ ℂ ) |
28 |
27
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( abs ‘ ( 𝐴 − 𝑦 ) ) ∈ ℝ ) |
29 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ℑ ‘ 𝐴 ) ≠ 0 ) |
30 |
21 29
|
eqnetrrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ℑ ‘ ( 𝐴 − 𝑦 ) ) ≠ 0 ) |
31 |
24 30
|
absrpcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( abs ‘ ( ℑ ‘ ( 𝐴 − 𝑦 ) ) ) ∈ ℝ+ ) |
32 |
|
rphalflt |
⊢ ( ( abs ‘ ( ℑ ‘ ( 𝐴 − 𝑦 ) ) ) ∈ ℝ+ → ( ( abs ‘ ( ℑ ‘ ( 𝐴 − 𝑦 ) ) ) / 2 ) < ( abs ‘ ( ℑ ‘ ( 𝐴 − 𝑦 ) ) ) ) |
33 |
31 32
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( abs ‘ ( ℑ ‘ ( 𝐴 − 𝑦 ) ) ) / 2 ) < ( abs ‘ ( ℑ ‘ ( 𝐴 − 𝑦 ) ) ) ) |
34 |
|
absimle |
⊢ ( ( 𝐴 − 𝑦 ) ∈ ℂ → ( abs ‘ ( ℑ ‘ ( 𝐴 − 𝑦 ) ) ) ≤ ( abs ‘ ( 𝐴 − 𝑦 ) ) ) |
35 |
27 34
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( abs ‘ ( ℑ ‘ ( 𝐴 − 𝑦 ) ) ) ≤ ( abs ‘ ( 𝐴 − 𝑦 ) ) ) |
36 |
26 25 28 33 35
|
ltletrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( abs ‘ ( ℑ ‘ ( 𝐴 − 𝑦 ) ) ) / 2 ) < ( abs ‘ ( 𝐴 − 𝑦 ) ) ) |
37 |
23 36
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) < ( abs ‘ ( 𝐴 − 𝑦 ) ) ) |
38 |
37
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ℝ ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) < ( abs ‘ ( 𝐴 − 𝑦 ) ) ) |
39 |
|
breq1 |
⊢ ( 𝑥 = ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) → ( 𝑥 < ( abs ‘ ( 𝐴 − 𝑦 ) ) ↔ ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) < ( abs ‘ ( 𝐴 − 𝑦 ) ) ) ) |
40 |
39
|
ralbidv |
⊢ ( 𝑥 = ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) → ( ∀ 𝑦 ∈ ℝ 𝑥 < ( abs ‘ ( 𝐴 − 𝑦 ) ) ↔ ∀ 𝑦 ∈ ℝ ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) < ( abs ‘ ( 𝐴 − 𝑦 ) ) ) ) |
41 |
40
|
rspcev |
⊢ ( ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) ∈ ℝ+ ∧ ∀ 𝑦 ∈ ℝ ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) < ( abs ‘ ( 𝐴 − 𝑦 ) ) ) → ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ ℝ 𝑥 < ( abs ‘ ( 𝐴 − 𝑦 ) ) ) |
42 |
11 38 41
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ ℝ 𝑥 < ( abs ‘ ( 𝐴 − 𝑦 ) ) ) |