Metamath Proof Explorer


Theorem dtruALT2

Description: Alternate proof of dtru using ax-pr instead of ax-pow . (Contributed by Mario Carneiro, 31-Aug-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion dtruALT2 ¬ ∀ 𝑥 𝑥 = 𝑦

Proof

Step Hyp Ref Expression
1 0inp0 ( 𝑦 = ∅ → ¬ 𝑦 = { ∅ } )
2 snex { ∅ } ∈ V
3 eqeq2 ( 𝑥 = { ∅ } → ( 𝑦 = 𝑥𝑦 = { ∅ } ) )
4 3 notbid ( 𝑥 = { ∅ } → ( ¬ 𝑦 = 𝑥 ↔ ¬ 𝑦 = { ∅ } ) )
5 2 4 spcev ( ¬ 𝑦 = { ∅ } → ∃ 𝑥 ¬ 𝑦 = 𝑥 )
6 1 5 syl ( 𝑦 = ∅ → ∃ 𝑥 ¬ 𝑦 = 𝑥 )
7 0ex ∅ ∈ V
8 eqeq2 ( 𝑥 = ∅ → ( 𝑦 = 𝑥𝑦 = ∅ ) )
9 8 notbid ( 𝑥 = ∅ → ( ¬ 𝑦 = 𝑥 ↔ ¬ 𝑦 = ∅ ) )
10 7 9 spcev ( ¬ 𝑦 = ∅ → ∃ 𝑥 ¬ 𝑦 = 𝑥 )
11 6 10 pm2.61i 𝑥 ¬ 𝑦 = 𝑥
12 exnal ( ∃ 𝑥 ¬ 𝑦 = 𝑥 ↔ ¬ ∀ 𝑥 𝑦 = 𝑥 )
13 eqcom ( 𝑦 = 𝑥𝑥 = 𝑦 )
14 13 albii ( ∀ 𝑥 𝑦 = 𝑥 ↔ ∀ 𝑥 𝑥 = 𝑦 )
15 12 14 xchbinx ( ∃ 𝑥 ¬ 𝑦 = 𝑥 ↔ ¬ ∀ 𝑥 𝑥 = 𝑦 )
16 11 15 mpbi ¬ ∀ 𝑥 𝑥 = 𝑦