Step |
Hyp |
Ref |
Expression |
1 |
|
0inp0 |
⊢ ( 𝑦 = ∅ → ¬ 𝑦 = { ∅ } ) |
2 |
|
snex |
⊢ { ∅ } ∈ V |
3 |
|
eqeq2 |
⊢ ( 𝑥 = { ∅ } → ( 𝑦 = 𝑥 ↔ 𝑦 = { ∅ } ) ) |
4 |
3
|
notbid |
⊢ ( 𝑥 = { ∅ } → ( ¬ 𝑦 = 𝑥 ↔ ¬ 𝑦 = { ∅ } ) ) |
5 |
2 4
|
spcev |
⊢ ( ¬ 𝑦 = { ∅ } → ∃ 𝑥 ¬ 𝑦 = 𝑥 ) |
6 |
1 5
|
syl |
⊢ ( 𝑦 = ∅ → ∃ 𝑥 ¬ 𝑦 = 𝑥 ) |
7 |
|
0ex |
⊢ ∅ ∈ V |
8 |
|
eqeq2 |
⊢ ( 𝑥 = ∅ → ( 𝑦 = 𝑥 ↔ 𝑦 = ∅ ) ) |
9 |
8
|
notbid |
⊢ ( 𝑥 = ∅ → ( ¬ 𝑦 = 𝑥 ↔ ¬ 𝑦 = ∅ ) ) |
10 |
7 9
|
spcev |
⊢ ( ¬ 𝑦 = ∅ → ∃ 𝑥 ¬ 𝑦 = 𝑥 ) |
11 |
6 10
|
pm2.61i |
⊢ ∃ 𝑥 ¬ 𝑦 = 𝑥 |
12 |
|
exnal |
⊢ ( ∃ 𝑥 ¬ 𝑦 = 𝑥 ↔ ¬ ∀ 𝑥 𝑦 = 𝑥 ) |
13 |
|
eqcom |
⊢ ( 𝑦 = 𝑥 ↔ 𝑥 = 𝑦 ) |
14 |
13
|
albii |
⊢ ( ∀ 𝑥 𝑦 = 𝑥 ↔ ∀ 𝑥 𝑥 = 𝑦 ) |
15 |
12 14
|
xchbinx |
⊢ ( ∃ 𝑥 ¬ 𝑦 = 𝑥 ↔ ¬ ∀ 𝑥 𝑥 = 𝑦 ) |
16 |
11 15
|
mpbi |
⊢ ¬ ∀ 𝑥 𝑥 = 𝑦 |