| Step | Hyp | Ref | Expression | 
						
							| 1 |  | el | ⊢ ∃ 𝑤 𝑥  ∈  𝑤 | 
						
							| 2 |  | ax-nul | ⊢ ∃ 𝑧 ∀ 𝑥 ¬  𝑥  ∈  𝑧 | 
						
							| 3 |  | elequ1 | ⊢ ( 𝑥  =  𝑤  →  ( 𝑥  ∈  𝑧  ↔  𝑤  ∈  𝑧 ) ) | 
						
							| 4 | 3 | notbid | ⊢ ( 𝑥  =  𝑤  →  ( ¬  𝑥  ∈  𝑧  ↔  ¬  𝑤  ∈  𝑧 ) ) | 
						
							| 5 | 4 | spw | ⊢ ( ∀ 𝑥 ¬  𝑥  ∈  𝑧  →  ¬  𝑥  ∈  𝑧 ) | 
						
							| 6 | 2 5 | eximii | ⊢ ∃ 𝑧 ¬  𝑥  ∈  𝑧 | 
						
							| 7 |  | exdistrv | ⊢ ( ∃ 𝑤 ∃ 𝑧 ( 𝑥  ∈  𝑤  ∧  ¬  𝑥  ∈  𝑧 )  ↔  ( ∃ 𝑤 𝑥  ∈  𝑤  ∧  ∃ 𝑧 ¬  𝑥  ∈  𝑧 ) ) | 
						
							| 8 | 1 6 7 | mpbir2an | ⊢ ∃ 𝑤 ∃ 𝑧 ( 𝑥  ∈  𝑤  ∧  ¬  𝑥  ∈  𝑧 ) | 
						
							| 9 |  | ax9v2 | ⊢ ( 𝑤  =  𝑧  →  ( 𝑥  ∈  𝑤  →  𝑥  ∈  𝑧 ) ) | 
						
							| 10 | 9 | com12 | ⊢ ( 𝑥  ∈  𝑤  →  ( 𝑤  =  𝑧  →  𝑥  ∈  𝑧 ) ) | 
						
							| 11 | 10 | con3dimp | ⊢ ( ( 𝑥  ∈  𝑤  ∧  ¬  𝑥  ∈  𝑧 )  →  ¬  𝑤  =  𝑧 ) | 
						
							| 12 | 11 | 2eximi | ⊢ ( ∃ 𝑤 ∃ 𝑧 ( 𝑥  ∈  𝑤  ∧  ¬  𝑥  ∈  𝑧 )  →  ∃ 𝑤 ∃ 𝑧 ¬  𝑤  =  𝑧 ) | 
						
							| 13 |  | equequ2 | ⊢ ( 𝑧  =  𝑦  →  ( 𝑤  =  𝑧  ↔  𝑤  =  𝑦 ) ) | 
						
							| 14 | 13 | notbid | ⊢ ( 𝑧  =  𝑦  →  ( ¬  𝑤  =  𝑧  ↔  ¬  𝑤  =  𝑦 ) ) | 
						
							| 15 |  | ax7v1 | ⊢ ( 𝑥  =  𝑤  →  ( 𝑥  =  𝑦  →  𝑤  =  𝑦 ) ) | 
						
							| 16 | 15 | con3d | ⊢ ( 𝑥  =  𝑤  →  ( ¬  𝑤  =  𝑦  →  ¬  𝑥  =  𝑦 ) ) | 
						
							| 17 | 16 | spimevw | ⊢ ( ¬  𝑤  =  𝑦  →  ∃ 𝑥 ¬  𝑥  =  𝑦 ) | 
						
							| 18 | 14 17 | biimtrdi | ⊢ ( 𝑧  =  𝑦  →  ( ¬  𝑤  =  𝑧  →  ∃ 𝑥 ¬  𝑥  =  𝑦 ) ) | 
						
							| 19 |  | ax7v1 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  =  𝑦  →  𝑧  =  𝑦 ) ) | 
						
							| 20 | 19 | con3d | ⊢ ( 𝑥  =  𝑧  →  ( ¬  𝑧  =  𝑦  →  ¬  𝑥  =  𝑦 ) ) | 
						
							| 21 | 20 | spimevw | ⊢ ( ¬  𝑧  =  𝑦  →  ∃ 𝑥 ¬  𝑥  =  𝑦 ) | 
						
							| 22 | 21 | a1d | ⊢ ( ¬  𝑧  =  𝑦  →  ( ¬  𝑤  =  𝑧  →  ∃ 𝑥 ¬  𝑥  =  𝑦 ) ) | 
						
							| 23 | 18 22 | pm2.61i | ⊢ ( ¬  𝑤  =  𝑧  →  ∃ 𝑥 ¬  𝑥  =  𝑦 ) | 
						
							| 24 | 23 | exlimivv | ⊢ ( ∃ 𝑤 ∃ 𝑧 ¬  𝑤  =  𝑧  →  ∃ 𝑥 ¬  𝑥  =  𝑦 ) | 
						
							| 25 | 8 12 24 | mp2b | ⊢ ∃ 𝑥 ¬  𝑥  =  𝑦 | 
						
							| 26 |  | exnal | ⊢ ( ∃ 𝑥 ¬  𝑥  =  𝑦  ↔  ¬  ∀ 𝑥 𝑥  =  𝑦 ) | 
						
							| 27 | 25 26 | mpbi | ⊢ ¬  ∀ 𝑥 𝑥  =  𝑦 |