| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dv11cn.x | ⊢ 𝑋  =  ( 𝐴 ( ball ‘ ( abs  ∘   −  ) ) 𝑅 ) | 
						
							| 2 |  | dv11cn.a | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 3 |  | dv11cn.r | ⊢ ( 𝜑  →  𝑅  ∈  ℝ* ) | 
						
							| 4 |  | dv11cn.f | ⊢ ( 𝜑  →  𝐹 : 𝑋 ⟶ ℂ ) | 
						
							| 5 |  | dv11cn.g | ⊢ ( 𝜑  →  𝐺 : 𝑋 ⟶ ℂ ) | 
						
							| 6 |  | dv11cn.d | ⊢ ( 𝜑  →  dom  ( ℂ  D  𝐹 )  =  𝑋 ) | 
						
							| 7 |  | dv11cn.e | ⊢ ( 𝜑  →  ( ℂ  D  𝐹 )  =  ( ℂ  D  𝐺 ) ) | 
						
							| 8 |  | dv11cn.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑋 ) | 
						
							| 9 |  | dv11cn.p | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐶 )  =  ( 𝐺 ‘ 𝐶 ) ) | 
						
							| 10 | 4 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  𝑋 ) | 
						
							| 11 | 5 | ffnd | ⊢ ( 𝜑  →  𝐺  Fn  𝑋 ) | 
						
							| 12 | 1 | ovexi | ⊢ 𝑋  ∈  V | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜑  →  𝑋  ∈  V ) | 
						
							| 14 |  | inidm | ⊢ ( 𝑋  ∩  𝑋 )  =  𝑋 | 
						
							| 15 | 10 11 13 13 14 | offn | ⊢ ( 𝜑  →  ( 𝐹  ∘f   −  𝐺 )  Fn  𝑋 ) | 
						
							| 16 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 17 |  | fnconstg | ⊢ ( 0  ∈  ℂ  →  ( 𝑋  ×  { 0 } )  Fn  𝑋 ) | 
						
							| 18 | 16 17 | mp1i | ⊢ ( 𝜑  →  ( 𝑋  ×  { 0 } )  Fn  𝑋 ) | 
						
							| 19 |  | subcl | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( 𝑥  −  𝑦 )  ∈  ℂ ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ ) )  →  ( 𝑥  −  𝑦 )  ∈  ℂ ) | 
						
							| 21 | 20 4 5 13 13 14 | off | ⊢ ( 𝜑  →  ( 𝐹  ∘f   −  𝐺 ) : 𝑋 ⟶ ℂ ) | 
						
							| 22 | 21 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝐹  ∘f   −  𝐺 ) ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 23 | 8 | anim1ci | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 𝑥  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) ) | 
						
							| 24 |  | cnxmet | ⊢ ( abs  ∘   −  )  ∈  ( ∞Met ‘ ℂ ) | 
						
							| 25 |  | blssm | ⊢ ( ( ( abs  ∘   −  )  ∈  ( ∞Met ‘ ℂ )  ∧  𝐴  ∈  ℂ  ∧  𝑅  ∈  ℝ* )  →  ( 𝐴 ( ball ‘ ( abs  ∘   −  ) ) 𝑅 )  ⊆  ℂ ) | 
						
							| 26 | 24 2 3 25 | mp3an2i | ⊢ ( 𝜑  →  ( 𝐴 ( ball ‘ ( abs  ∘   −  ) ) 𝑅 )  ⊆  ℂ ) | 
						
							| 27 | 1 26 | eqsstrid | ⊢ ( 𝜑  →  𝑋  ⊆  ℂ ) | 
						
							| 28 | 4 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 29 | 5 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 𝐺 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 30 | 4 | feqmptd | ⊢ ( 𝜑  →  𝐹  =  ( 𝑥  ∈  𝑋  ↦  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 31 | 5 | feqmptd | ⊢ ( 𝜑  →  𝐺  =  ( 𝑥  ∈  𝑋  ↦  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 32 | 13 28 29 30 31 | offval2 | ⊢ ( 𝜑  →  ( 𝐹  ∘f   −  𝐺 )  =  ( 𝑥  ∈  𝑋  ↦  ( ( 𝐹 ‘ 𝑥 )  −  ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 33 | 32 | oveq2d | ⊢ ( 𝜑  →  ( ℂ  D  ( 𝐹  ∘f   −  𝐺 ) )  =  ( ℂ  D  ( 𝑥  ∈  𝑋  ↦  ( ( 𝐹 ‘ 𝑥 )  −  ( 𝐺 ‘ 𝑥 ) ) ) ) ) | 
						
							| 34 |  | cnelprrecn | ⊢ ℂ  ∈  { ℝ ,  ℂ } | 
						
							| 35 | 34 | a1i | ⊢ ( 𝜑  →  ℂ  ∈  { ℝ ,  ℂ } ) | 
						
							| 36 |  | fvexd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( ℂ  D  𝐹 ) ‘ 𝑥 )  ∈  V ) | 
						
							| 37 | 30 | oveq2d | ⊢ ( 𝜑  →  ( ℂ  D  𝐹 )  =  ( ℂ  D  ( 𝑥  ∈  𝑋  ↦  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 38 |  | dvfcn | ⊢ ( ℂ  D  𝐹 ) : dom  ( ℂ  D  𝐹 ) ⟶ ℂ | 
						
							| 39 | 6 | feq2d | ⊢ ( 𝜑  →  ( ( ℂ  D  𝐹 ) : dom  ( ℂ  D  𝐹 ) ⟶ ℂ  ↔  ( ℂ  D  𝐹 ) : 𝑋 ⟶ ℂ ) ) | 
						
							| 40 | 38 39 | mpbii | ⊢ ( 𝜑  →  ( ℂ  D  𝐹 ) : 𝑋 ⟶ ℂ ) | 
						
							| 41 | 40 | feqmptd | ⊢ ( 𝜑  →  ( ℂ  D  𝐹 )  =  ( 𝑥  ∈  𝑋  ↦  ( ( ℂ  D  𝐹 ) ‘ 𝑥 ) ) ) | 
						
							| 42 | 37 41 | eqtr3d | ⊢ ( 𝜑  →  ( ℂ  D  ( 𝑥  ∈  𝑋  ↦  ( 𝐹 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  𝑋  ↦  ( ( ℂ  D  𝐹 ) ‘ 𝑥 ) ) ) | 
						
							| 43 | 31 | oveq2d | ⊢ ( 𝜑  →  ( ℂ  D  𝐺 )  =  ( ℂ  D  ( 𝑥  ∈  𝑋  ↦  ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 44 | 7 41 43 | 3eqtr3rd | ⊢ ( 𝜑  →  ( ℂ  D  ( 𝑥  ∈  𝑋  ↦  ( 𝐺 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  𝑋  ↦  ( ( ℂ  D  𝐹 ) ‘ 𝑥 ) ) ) | 
						
							| 45 | 35 28 36 42 29 36 44 | dvmptsub | ⊢ ( 𝜑  →  ( ℂ  D  ( 𝑥  ∈  𝑋  ↦  ( ( 𝐹 ‘ 𝑥 )  −  ( 𝐺 ‘ 𝑥 ) ) ) )  =  ( 𝑥  ∈  𝑋  ↦  ( ( ( ℂ  D  𝐹 ) ‘ 𝑥 )  −  ( ( ℂ  D  𝐹 ) ‘ 𝑥 ) ) ) ) | 
						
							| 46 | 40 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( ℂ  D  𝐹 ) ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 47 | 46 | subidd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( ( ℂ  D  𝐹 ) ‘ 𝑥 )  −  ( ( ℂ  D  𝐹 ) ‘ 𝑥 ) )  =  0 ) | 
						
							| 48 | 47 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  ( ( ( ℂ  D  𝐹 ) ‘ 𝑥 )  −  ( ( ℂ  D  𝐹 ) ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  𝑋  ↦  0 ) ) | 
						
							| 49 |  | fconstmpt | ⊢ ( 𝑋  ×  { 0 } )  =  ( 𝑥  ∈  𝑋  ↦  0 ) | 
						
							| 50 | 48 49 | eqtr4di | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  ( ( ( ℂ  D  𝐹 ) ‘ 𝑥 )  −  ( ( ℂ  D  𝐹 ) ‘ 𝑥 ) ) )  =  ( 𝑋  ×  { 0 } ) ) | 
						
							| 51 | 33 45 50 | 3eqtrd | ⊢ ( 𝜑  →  ( ℂ  D  ( 𝐹  ∘f   −  𝐺 ) )  =  ( 𝑋  ×  { 0 } ) ) | 
						
							| 52 | 51 | dmeqd | ⊢ ( 𝜑  →  dom  ( ℂ  D  ( 𝐹  ∘f   −  𝐺 ) )  =  dom  ( 𝑋  ×  { 0 } ) ) | 
						
							| 53 |  | snnzg | ⊢ ( 0  ∈  ℂ  →  { 0 }  ≠  ∅ ) | 
						
							| 54 |  | dmxp | ⊢ ( { 0 }  ≠  ∅  →  dom  ( 𝑋  ×  { 0 } )  =  𝑋 ) | 
						
							| 55 | 16 53 54 | mp2b | ⊢ dom  ( 𝑋  ×  { 0 } )  =  𝑋 | 
						
							| 56 | 52 55 | eqtrdi | ⊢ ( 𝜑  →  dom  ( ℂ  D  ( 𝐹  ∘f   −  𝐺 ) )  =  𝑋 ) | 
						
							| 57 |  | eqimss2 | ⊢ ( dom  ( ℂ  D  ( 𝐹  ∘f   −  𝐺 ) )  =  𝑋  →  𝑋  ⊆  dom  ( ℂ  D  ( 𝐹  ∘f   −  𝐺 ) ) ) | 
						
							| 58 | 56 57 | syl | ⊢ ( 𝜑  →  𝑋  ⊆  dom  ( ℂ  D  ( 𝐹  ∘f   −  𝐺 ) ) ) | 
						
							| 59 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 60 | 51 | fveq1d | ⊢ ( 𝜑  →  ( ( ℂ  D  ( 𝐹  ∘f   −  𝐺 ) ) ‘ 𝑥 )  =  ( ( 𝑋  ×  { 0 } ) ‘ 𝑥 ) ) | 
						
							| 61 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 62 | 61 | fvconst2 | ⊢ ( 𝑥  ∈  𝑋  →  ( ( 𝑋  ×  { 0 } ) ‘ 𝑥 )  =  0 ) | 
						
							| 63 | 60 62 | sylan9eq | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( ℂ  D  ( 𝐹  ∘f   −  𝐺 ) ) ‘ 𝑥 )  =  0 ) | 
						
							| 64 | 63 | abs00bd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( abs ‘ ( ( ℂ  D  ( 𝐹  ∘f   −  𝐺 ) ) ‘ 𝑥 ) )  =  0 ) | 
						
							| 65 |  | 0le0 | ⊢ 0  ≤  0 | 
						
							| 66 | 64 65 | eqbrtrdi | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( abs ‘ ( ( ℂ  D  ( 𝐹  ∘f   −  𝐺 ) ) ‘ 𝑥 ) )  ≤  0 ) | 
						
							| 67 | 27 21 2 3 1 58 59 66 | dvlipcn | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( abs ‘ ( ( ( 𝐹  ∘f   −  𝐺 ) ‘ 𝑥 )  −  ( ( 𝐹  ∘f   −  𝐺 ) ‘ 𝐶 ) ) )  ≤  ( 0  ·  ( abs ‘ ( 𝑥  −  𝐶 ) ) ) ) | 
						
							| 68 | 23 67 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( abs ‘ ( ( ( 𝐹  ∘f   −  𝐺 ) ‘ 𝑥 )  −  ( ( 𝐹  ∘f   −  𝐺 ) ‘ 𝐶 ) ) )  ≤  ( 0  ·  ( abs ‘ ( 𝑥  −  𝐶 ) ) ) ) | 
						
							| 69 | 32 | fveq1d | ⊢ ( 𝜑  →  ( ( 𝐹  ∘f   −  𝐺 ) ‘ 𝐶 )  =  ( ( 𝑥  ∈  𝑋  ↦  ( ( 𝐹 ‘ 𝑥 )  −  ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝐶 ) ) | 
						
							| 70 |  | fveq2 | ⊢ ( 𝑥  =  𝐶  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝐶 ) ) | 
						
							| 71 |  | fveq2 | ⊢ ( 𝑥  =  𝐶  →  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝐶 ) ) | 
						
							| 72 | 70 71 | oveq12d | ⊢ ( 𝑥  =  𝐶  →  ( ( 𝐹 ‘ 𝑥 )  −  ( 𝐺 ‘ 𝑥 ) )  =  ( ( 𝐹 ‘ 𝐶 )  −  ( 𝐺 ‘ 𝐶 ) ) ) | 
						
							| 73 |  | eqid | ⊢ ( 𝑥  ∈  𝑋  ↦  ( ( 𝐹 ‘ 𝑥 )  −  ( 𝐺 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  𝑋  ↦  ( ( 𝐹 ‘ 𝑥 )  −  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 74 |  | ovex | ⊢ ( ( 𝐹 ‘ 𝐶 )  −  ( 𝐺 ‘ 𝐶 ) )  ∈  V | 
						
							| 75 | 72 73 74 | fvmpt | ⊢ ( 𝐶  ∈  𝑋  →  ( ( 𝑥  ∈  𝑋  ↦  ( ( 𝐹 ‘ 𝑥 )  −  ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝐶 )  =  ( ( 𝐹 ‘ 𝐶 )  −  ( 𝐺 ‘ 𝐶 ) ) ) | 
						
							| 76 | 8 75 | syl | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝑋  ↦  ( ( 𝐹 ‘ 𝑥 )  −  ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝐶 )  =  ( ( 𝐹 ‘ 𝐶 )  −  ( 𝐺 ‘ 𝐶 ) ) ) | 
						
							| 77 | 4 8 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐶 )  ∈  ℂ ) | 
						
							| 78 | 77 9 | subeq0bd | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝐶 )  −  ( 𝐺 ‘ 𝐶 ) )  =  0 ) | 
						
							| 79 | 69 76 78 | 3eqtrd | ⊢ ( 𝜑  →  ( ( 𝐹  ∘f   −  𝐺 ) ‘ 𝐶 )  =  0 ) | 
						
							| 80 | 79 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝐹  ∘f   −  𝐺 ) ‘ 𝐶 )  =  0 ) | 
						
							| 81 | 80 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( ( 𝐹  ∘f   −  𝐺 ) ‘ 𝑥 )  −  ( ( 𝐹  ∘f   −  𝐺 ) ‘ 𝐶 ) )  =  ( ( ( 𝐹  ∘f   −  𝐺 ) ‘ 𝑥 )  −  0 ) ) | 
						
							| 82 | 22 | subid1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( ( 𝐹  ∘f   −  𝐺 ) ‘ 𝑥 )  −  0 )  =  ( ( 𝐹  ∘f   −  𝐺 ) ‘ 𝑥 ) ) | 
						
							| 83 | 81 82 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( ( 𝐹  ∘f   −  𝐺 ) ‘ 𝑥 )  −  ( ( 𝐹  ∘f   −  𝐺 ) ‘ 𝐶 ) )  =  ( ( 𝐹  ∘f   −  𝐺 ) ‘ 𝑥 ) ) | 
						
							| 84 | 83 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( abs ‘ ( ( ( 𝐹  ∘f   −  𝐺 ) ‘ 𝑥 )  −  ( ( 𝐹  ∘f   −  𝐺 ) ‘ 𝐶 ) ) )  =  ( abs ‘ ( ( 𝐹  ∘f   −  𝐺 ) ‘ 𝑥 ) ) ) | 
						
							| 85 | 27 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝑥  ∈  ℂ ) | 
						
							| 86 | 27 8 | sseldd | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
						
							| 87 | 86 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐶  ∈  ℂ ) | 
						
							| 88 | 85 87 | subcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 𝑥  −  𝐶 )  ∈  ℂ ) | 
						
							| 89 | 88 | abscld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( abs ‘ ( 𝑥  −  𝐶 ) )  ∈  ℝ ) | 
						
							| 90 | 89 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( abs ‘ ( 𝑥  −  𝐶 ) )  ∈  ℂ ) | 
						
							| 91 | 90 | mul02d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 0  ·  ( abs ‘ ( 𝑥  −  𝐶 ) ) )  =  0 ) | 
						
							| 92 | 68 84 91 | 3brtr3d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( abs ‘ ( ( 𝐹  ∘f   −  𝐺 ) ‘ 𝑥 ) )  ≤  0 ) | 
						
							| 93 | 22 | absge0d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  0  ≤  ( abs ‘ ( ( 𝐹  ∘f   −  𝐺 ) ‘ 𝑥 ) ) ) | 
						
							| 94 | 22 | abscld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( abs ‘ ( ( 𝐹  ∘f   −  𝐺 ) ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 95 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 96 |  | letri3 | ⊢ ( ( ( abs ‘ ( ( 𝐹  ∘f   −  𝐺 ) ‘ 𝑥 ) )  ∈  ℝ  ∧  0  ∈  ℝ )  →  ( ( abs ‘ ( ( 𝐹  ∘f   −  𝐺 ) ‘ 𝑥 ) )  =  0  ↔  ( ( abs ‘ ( ( 𝐹  ∘f   −  𝐺 ) ‘ 𝑥 ) )  ≤  0  ∧  0  ≤  ( abs ‘ ( ( 𝐹  ∘f   −  𝐺 ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 97 | 94 95 96 | sylancl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( abs ‘ ( ( 𝐹  ∘f   −  𝐺 ) ‘ 𝑥 ) )  =  0  ↔  ( ( abs ‘ ( ( 𝐹  ∘f   −  𝐺 ) ‘ 𝑥 ) )  ≤  0  ∧  0  ≤  ( abs ‘ ( ( 𝐹  ∘f   −  𝐺 ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 98 | 92 93 97 | mpbir2and | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( abs ‘ ( ( 𝐹  ∘f   −  𝐺 ) ‘ 𝑥 ) )  =  0 ) | 
						
							| 99 | 22 98 | abs00d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝐹  ∘f   −  𝐺 ) ‘ 𝑥 )  =  0 ) | 
						
							| 100 | 62 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝑋  ×  { 0 } ) ‘ 𝑥 )  =  0 ) | 
						
							| 101 | 99 100 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝐹  ∘f   −  𝐺 ) ‘ 𝑥 )  =  ( ( 𝑋  ×  { 0 } ) ‘ 𝑥 ) ) | 
						
							| 102 | 15 18 101 | eqfnfvd | ⊢ ( 𝜑  →  ( 𝐹  ∘f   −  𝐺 )  =  ( 𝑋  ×  { 0 } ) ) | 
						
							| 103 |  | ofsubeq0 | ⊢ ( ( 𝑋  ∈  V  ∧  𝐹 : 𝑋 ⟶ ℂ  ∧  𝐺 : 𝑋 ⟶ ℂ )  →  ( ( 𝐹  ∘f   −  𝐺 )  =  ( 𝑋  ×  { 0 } )  ↔  𝐹  =  𝐺 ) ) | 
						
							| 104 | 12 4 5 103 | mp3an2i | ⊢ ( 𝜑  →  ( ( 𝐹  ∘f   −  𝐺 )  =  ( 𝑋  ×  { 0 } )  ↔  𝐹  =  𝐺 ) ) | 
						
							| 105 | 102 104 | mpbid | ⊢ ( 𝜑  →  𝐹  =  𝐺 ) |