Step |
Hyp |
Ref |
Expression |
1 |
|
dv11cn.x |
⊢ 𝑋 = ( 𝐴 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) |
2 |
|
dv11cn.a |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
3 |
|
dv11cn.r |
⊢ ( 𝜑 → 𝑅 ∈ ℝ* ) |
4 |
|
dv11cn.f |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) |
5 |
|
dv11cn.g |
⊢ ( 𝜑 → 𝐺 : 𝑋 ⟶ ℂ ) |
6 |
|
dv11cn.d |
⊢ ( 𝜑 → dom ( ℂ D 𝐹 ) = 𝑋 ) |
7 |
|
dv11cn.e |
⊢ ( 𝜑 → ( ℂ D 𝐹 ) = ( ℂ D 𝐺 ) ) |
8 |
|
dv11cn.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) |
9 |
|
dv11cn.p |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) = ( 𝐺 ‘ 𝐶 ) ) |
10 |
4
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝑋 ) |
11 |
5
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn 𝑋 ) |
12 |
1
|
ovexi |
⊢ 𝑋 ∈ V |
13 |
12
|
a1i |
⊢ ( 𝜑 → 𝑋 ∈ V ) |
14 |
|
inidm |
⊢ ( 𝑋 ∩ 𝑋 ) = 𝑋 |
15 |
10 11 13 13 14
|
offn |
⊢ ( 𝜑 → ( 𝐹 ∘f − 𝐺 ) Fn 𝑋 ) |
16 |
|
0cn |
⊢ 0 ∈ ℂ |
17 |
|
fnconstg |
⊢ ( 0 ∈ ℂ → ( 𝑋 × { 0 } ) Fn 𝑋 ) |
18 |
16 17
|
mp1i |
⊢ ( 𝜑 → ( 𝑋 × { 0 } ) Fn 𝑋 ) |
19 |
|
subcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 − 𝑦 ) ∈ ℂ ) |
20 |
19
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( 𝑥 − 𝑦 ) ∈ ℂ ) |
21 |
20 4 5 13 13 14
|
off |
⊢ ( 𝜑 → ( 𝐹 ∘f − 𝐺 ) : 𝑋 ⟶ ℂ ) |
22 |
21
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) ∈ ℂ ) |
23 |
8
|
anim1ci |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) |
24 |
|
cnxmet |
⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) |
25 |
|
blssm |
⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℝ* ) → ( 𝐴 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ⊆ ℂ ) |
26 |
24 2 3 25
|
mp3an2i |
⊢ ( 𝜑 → ( 𝐴 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ⊆ ℂ ) |
27 |
1 26
|
eqsstrid |
⊢ ( 𝜑 → 𝑋 ⊆ ℂ ) |
28 |
4
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
29 |
5
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
30 |
4
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
31 |
5
|
feqmptd |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝑋 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
32 |
13 28 29 30 31
|
offval2 |
⊢ ( 𝜑 → ( 𝐹 ∘f − 𝐺 ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) ) |
33 |
32
|
oveq2d |
⊢ ( 𝜑 → ( ℂ D ( 𝐹 ∘f − 𝐺 ) ) = ( ℂ D ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
34 |
|
cnelprrecn |
⊢ ℂ ∈ { ℝ , ℂ } |
35 |
34
|
a1i |
⊢ ( 𝜑 → ℂ ∈ { ℝ , ℂ } ) |
36 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ℂ D 𝐹 ) ‘ 𝑥 ) ∈ V ) |
37 |
30
|
oveq2d |
⊢ ( 𝜑 → ( ℂ D 𝐹 ) = ( ℂ D ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑥 ) ) ) ) |
38 |
|
dvfcn |
⊢ ( ℂ D 𝐹 ) : dom ( ℂ D 𝐹 ) ⟶ ℂ |
39 |
6
|
feq2d |
⊢ ( 𝜑 → ( ( ℂ D 𝐹 ) : dom ( ℂ D 𝐹 ) ⟶ ℂ ↔ ( ℂ D 𝐹 ) : 𝑋 ⟶ ℂ ) ) |
40 |
38 39
|
mpbii |
⊢ ( 𝜑 → ( ℂ D 𝐹 ) : 𝑋 ⟶ ℂ ) |
41 |
40
|
feqmptd |
⊢ ( 𝜑 → ( ℂ D 𝐹 ) = ( 𝑥 ∈ 𝑋 ↦ ( ( ℂ D 𝐹 ) ‘ 𝑥 ) ) ) |
42 |
37 41
|
eqtr3d |
⊢ ( 𝜑 → ( ℂ D ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( ℂ D 𝐹 ) ‘ 𝑥 ) ) ) |
43 |
31
|
oveq2d |
⊢ ( 𝜑 → ( ℂ D 𝐺 ) = ( ℂ D ( 𝑥 ∈ 𝑋 ↦ ( 𝐺 ‘ 𝑥 ) ) ) ) |
44 |
7 41 43
|
3eqtr3rd |
⊢ ( 𝜑 → ( ℂ D ( 𝑥 ∈ 𝑋 ↦ ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( ℂ D 𝐹 ) ‘ 𝑥 ) ) ) |
45 |
35 28 36 42 29 36 44
|
dvmptsub |
⊢ ( 𝜑 → ( ℂ D ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( ( ℂ D 𝐹 ) ‘ 𝑥 ) − ( ( ℂ D 𝐹 ) ‘ 𝑥 ) ) ) ) |
46 |
40
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ℂ D 𝐹 ) ‘ 𝑥 ) ∈ ℂ ) |
47 |
46
|
subidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( ℂ D 𝐹 ) ‘ 𝑥 ) − ( ( ℂ D 𝐹 ) ‘ 𝑥 ) ) = 0 ) |
48 |
47
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( ( ( ℂ D 𝐹 ) ‘ 𝑥 ) − ( ( ℂ D 𝐹 ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) |
49 |
|
fconstmpt |
⊢ ( 𝑋 × { 0 } ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) |
50 |
48 49
|
eqtr4di |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( ( ( ℂ D 𝐹 ) ‘ 𝑥 ) − ( ( ℂ D 𝐹 ) ‘ 𝑥 ) ) ) = ( 𝑋 × { 0 } ) ) |
51 |
33 45 50
|
3eqtrd |
⊢ ( 𝜑 → ( ℂ D ( 𝐹 ∘f − 𝐺 ) ) = ( 𝑋 × { 0 } ) ) |
52 |
51
|
dmeqd |
⊢ ( 𝜑 → dom ( ℂ D ( 𝐹 ∘f − 𝐺 ) ) = dom ( 𝑋 × { 0 } ) ) |
53 |
|
snnzg |
⊢ ( 0 ∈ ℂ → { 0 } ≠ ∅ ) |
54 |
|
dmxp |
⊢ ( { 0 } ≠ ∅ → dom ( 𝑋 × { 0 } ) = 𝑋 ) |
55 |
16 53 54
|
mp2b |
⊢ dom ( 𝑋 × { 0 } ) = 𝑋 |
56 |
52 55
|
eqtrdi |
⊢ ( 𝜑 → dom ( ℂ D ( 𝐹 ∘f − 𝐺 ) ) = 𝑋 ) |
57 |
|
eqimss2 |
⊢ ( dom ( ℂ D ( 𝐹 ∘f − 𝐺 ) ) = 𝑋 → 𝑋 ⊆ dom ( ℂ D ( 𝐹 ∘f − 𝐺 ) ) ) |
58 |
56 57
|
syl |
⊢ ( 𝜑 → 𝑋 ⊆ dom ( ℂ D ( 𝐹 ∘f − 𝐺 ) ) ) |
59 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
60 |
51
|
fveq1d |
⊢ ( 𝜑 → ( ( ℂ D ( 𝐹 ∘f − 𝐺 ) ) ‘ 𝑥 ) = ( ( 𝑋 × { 0 } ) ‘ 𝑥 ) ) |
61 |
|
c0ex |
⊢ 0 ∈ V |
62 |
61
|
fvconst2 |
⊢ ( 𝑥 ∈ 𝑋 → ( ( 𝑋 × { 0 } ) ‘ 𝑥 ) = 0 ) |
63 |
60 62
|
sylan9eq |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ℂ D ( 𝐹 ∘f − 𝐺 ) ) ‘ 𝑥 ) = 0 ) |
64 |
63
|
abs00bd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ ( ( ℂ D ( 𝐹 ∘f − 𝐺 ) ) ‘ 𝑥 ) ) = 0 ) |
65 |
|
0le0 |
⊢ 0 ≤ 0 |
66 |
64 65
|
eqbrtrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ ( ( ℂ D ( 𝐹 ∘f − 𝐺 ) ) ‘ 𝑥 ) ) ≤ 0 ) |
67 |
27 21 2 3 1 58 59 66
|
dvlipcn |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( abs ‘ ( ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) − ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝐶 ) ) ) ≤ ( 0 · ( abs ‘ ( 𝑥 − 𝐶 ) ) ) ) |
68 |
23 67
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ ( ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) − ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝐶 ) ) ) ≤ ( 0 · ( abs ‘ ( 𝑥 − 𝐶 ) ) ) ) |
69 |
32
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝐶 ) = ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝐶 ) ) |
70 |
|
fveq2 |
⊢ ( 𝑥 = 𝐶 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐶 ) ) |
71 |
|
fveq2 |
⊢ ( 𝑥 = 𝐶 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝐶 ) ) |
72 |
70 71
|
oveq12d |
⊢ ( 𝑥 = 𝐶 → ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝐶 ) − ( 𝐺 ‘ 𝐶 ) ) ) |
73 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) |
74 |
|
ovex |
⊢ ( ( 𝐹 ‘ 𝐶 ) − ( 𝐺 ‘ 𝐶 ) ) ∈ V |
75 |
72 73 74
|
fvmpt |
⊢ ( 𝐶 ∈ 𝑋 → ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝐶 ) = ( ( 𝐹 ‘ 𝐶 ) − ( 𝐺 ‘ 𝐶 ) ) ) |
76 |
8 75
|
syl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝐶 ) = ( ( 𝐹 ‘ 𝐶 ) − ( 𝐺 ‘ 𝐶 ) ) ) |
77 |
4 8
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ ℂ ) |
78 |
77 9
|
subeq0bd |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐶 ) − ( 𝐺 ‘ 𝐶 ) ) = 0 ) |
79 |
69 76 78
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝐶 ) = 0 ) |
80 |
79
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝐶 ) = 0 ) |
81 |
80
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) − ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝐶 ) ) = ( ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) − 0 ) ) |
82 |
22
|
subid1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) − 0 ) = ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) ) |
83 |
81 82
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) − ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝐶 ) ) = ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) ) |
84 |
83
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ ( ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) − ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝐶 ) ) ) = ( abs ‘ ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) ) ) |
85 |
27
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ ℂ ) |
86 |
27 8
|
sseldd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
87 |
86
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ∈ ℂ ) |
88 |
85 87
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 − 𝐶 ) ∈ ℂ ) |
89 |
88
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ ( 𝑥 − 𝐶 ) ) ∈ ℝ ) |
90 |
89
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ ( 𝑥 − 𝐶 ) ) ∈ ℂ ) |
91 |
90
|
mul02d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 0 · ( abs ‘ ( 𝑥 − 𝐶 ) ) ) = 0 ) |
92 |
68 84 91
|
3brtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) ) ≤ 0 ) |
93 |
22
|
absge0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 0 ≤ ( abs ‘ ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) ) ) |
94 |
22
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) ) ∈ ℝ ) |
95 |
|
0re |
⊢ 0 ∈ ℝ |
96 |
|
letri3 |
⊢ ( ( ( abs ‘ ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( abs ‘ ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) ) = 0 ↔ ( ( abs ‘ ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) ) ≤ 0 ∧ 0 ≤ ( abs ‘ ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) ) ) ) ) |
97 |
94 95 96
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( abs ‘ ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) ) = 0 ↔ ( ( abs ‘ ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) ) ≤ 0 ∧ 0 ≤ ( abs ‘ ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) ) ) ) ) |
98 |
92 93 97
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) ) = 0 ) |
99 |
22 98
|
abs00d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) = 0 ) |
100 |
62
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑋 × { 0 } ) ‘ 𝑥 ) = 0 ) |
101 |
99 100
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) = ( ( 𝑋 × { 0 } ) ‘ 𝑥 ) ) |
102 |
15 18 101
|
eqfnfvd |
⊢ ( 𝜑 → ( 𝐹 ∘f − 𝐺 ) = ( 𝑋 × { 0 } ) ) |
103 |
|
ofsubeq0 |
⊢ ( ( 𝑋 ∈ V ∧ 𝐹 : 𝑋 ⟶ ℂ ∧ 𝐺 : 𝑋 ⟶ ℂ ) → ( ( 𝐹 ∘f − 𝐺 ) = ( 𝑋 × { 0 } ) ↔ 𝐹 = 𝐺 ) ) |
104 |
12 4 5 103
|
mp3an2i |
⊢ ( 𝜑 → ( ( 𝐹 ∘f − 𝐺 ) = ( 𝑋 × { 0 } ) ↔ 𝐹 = 𝐺 ) ) |
105 |
102 104
|
mpbid |
⊢ ( 𝜑 → 𝐹 = 𝐺 ) |