Step |
Hyp |
Ref |
Expression |
1 |
|
dvadd.f |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) |
2 |
|
dvadd.x |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) |
3 |
|
dvadd.g |
⊢ ( 𝜑 → 𝐺 : 𝑌 ⟶ ℂ ) |
4 |
|
dvadd.y |
⊢ ( 𝜑 → 𝑌 ⊆ 𝑆 ) |
5 |
|
dvadd.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
6 |
|
dvadd.df |
⊢ ( 𝜑 → 𝐶 ∈ dom ( 𝑆 D 𝐹 ) ) |
7 |
|
dvadd.dg |
⊢ ( 𝜑 → 𝐶 ∈ dom ( 𝑆 D 𝐺 ) ) |
8 |
|
dvfg |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) : dom ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ⟶ ℂ ) |
9 |
|
ffun |
⊢ ( ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) : dom ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ⟶ ℂ → Fun ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ) |
10 |
5 8 9
|
3syl |
⊢ ( 𝜑 → Fun ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ) |
11 |
|
recnprss |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) |
12 |
5 11
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
13 |
|
fvexd |
⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ∈ V ) |
14 |
|
fvexd |
⊢ ( 𝜑 → ( ( 𝑆 D 𝐺 ) ‘ 𝐶 ) ∈ V ) |
15 |
|
dvfg |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) |
16 |
|
ffun |
⊢ ( ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ → Fun ( 𝑆 D 𝐹 ) ) |
17 |
|
funfvbrb |
⊢ ( Fun ( 𝑆 D 𝐹 ) → ( 𝐶 ∈ dom ( 𝑆 D 𝐹 ) ↔ 𝐶 ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ) |
18 |
5 15 16 17
|
4syl |
⊢ ( 𝜑 → ( 𝐶 ∈ dom ( 𝑆 D 𝐹 ) ↔ 𝐶 ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ) |
19 |
6 18
|
mpbid |
⊢ ( 𝜑 → 𝐶 ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) |
20 |
|
dvfg |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D 𝐺 ) : dom ( 𝑆 D 𝐺 ) ⟶ ℂ ) |
21 |
|
ffun |
⊢ ( ( 𝑆 D 𝐺 ) : dom ( 𝑆 D 𝐺 ) ⟶ ℂ → Fun ( 𝑆 D 𝐺 ) ) |
22 |
|
funfvbrb |
⊢ ( Fun ( 𝑆 D 𝐺 ) → ( 𝐶 ∈ dom ( 𝑆 D 𝐺 ) ↔ 𝐶 ( 𝑆 D 𝐺 ) ( ( 𝑆 D 𝐺 ) ‘ 𝐶 ) ) ) |
23 |
5 20 21 22
|
4syl |
⊢ ( 𝜑 → ( 𝐶 ∈ dom ( 𝑆 D 𝐺 ) ↔ 𝐶 ( 𝑆 D 𝐺 ) ( ( 𝑆 D 𝐺 ) ‘ 𝐶 ) ) ) |
24 |
7 23
|
mpbid |
⊢ ( 𝜑 → 𝐶 ( 𝑆 D 𝐺 ) ( ( 𝑆 D 𝐺 ) ‘ 𝐶 ) ) |
25 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
26 |
1 2 3 4 12 13 14 19 24 25
|
dvaddbr |
⊢ ( 𝜑 → 𝐶 ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ( ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) + ( ( 𝑆 D 𝐺 ) ‘ 𝐶 ) ) ) |
27 |
|
funbrfv |
⊢ ( Fun ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) → ( 𝐶 ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ( ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) + ( ( 𝑆 D 𝐺 ) ‘ 𝐶 ) ) → ( ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ‘ 𝐶 ) = ( ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) + ( ( 𝑆 D 𝐺 ) ‘ 𝐶 ) ) ) ) |
28 |
10 26 27
|
sylc |
⊢ ( 𝜑 → ( ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ‘ 𝐶 ) = ( ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) + ( ( 𝑆 D 𝐺 ) ‘ 𝐶 ) ) ) |