| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvaddf.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
| 2 |
|
dvaddf.f |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) |
| 3 |
|
dvaddf.g |
⊢ ( 𝜑 → 𝐺 : 𝑋 ⟶ ℂ ) |
| 4 |
|
dvaddf.df |
⊢ ( 𝜑 → dom ( 𝑆 D 𝐹 ) = 𝑋 ) |
| 5 |
|
dvaddf.dg |
⊢ ( 𝜑 → dom ( 𝑆 D 𝐺 ) = 𝑋 ) |
| 6 |
|
dvbsss |
⊢ dom ( 𝑆 D 𝐹 ) ⊆ 𝑆 |
| 7 |
4 6
|
eqsstrrdi |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) |
| 8 |
1 7
|
ssexd |
⊢ ( 𝜑 → 𝑋 ∈ V ) |
| 9 |
|
dvfg |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) |
| 10 |
1 9
|
syl |
⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) |
| 11 |
4
|
feq2d |
⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ↔ ( 𝑆 D 𝐹 ) : 𝑋 ⟶ ℂ ) ) |
| 12 |
10 11
|
mpbid |
⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) : 𝑋 ⟶ ℂ ) |
| 13 |
12
|
ffnd |
⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) Fn 𝑋 ) |
| 14 |
|
dvfg |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D 𝐺 ) : dom ( 𝑆 D 𝐺 ) ⟶ ℂ ) |
| 15 |
1 14
|
syl |
⊢ ( 𝜑 → ( 𝑆 D 𝐺 ) : dom ( 𝑆 D 𝐺 ) ⟶ ℂ ) |
| 16 |
5
|
feq2d |
⊢ ( 𝜑 → ( ( 𝑆 D 𝐺 ) : dom ( 𝑆 D 𝐺 ) ⟶ ℂ ↔ ( 𝑆 D 𝐺 ) : 𝑋 ⟶ ℂ ) ) |
| 17 |
15 16
|
mpbid |
⊢ ( 𝜑 → ( 𝑆 D 𝐺 ) : 𝑋 ⟶ ℂ ) |
| 18 |
17
|
ffnd |
⊢ ( 𝜑 → ( 𝑆 D 𝐺 ) Fn 𝑋 ) |
| 19 |
|
dvfg |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) : dom ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ⟶ ℂ ) |
| 20 |
1 19
|
syl |
⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) : dom ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ⟶ ℂ ) |
| 21 |
|
recnprss |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) |
| 22 |
1 21
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 23 |
|
addcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + 𝑦 ) ∈ ℂ ) |
| 24 |
23
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( 𝑥 + 𝑦 ) ∈ ℂ ) |
| 25 |
|
inidm |
⊢ ( 𝑋 ∩ 𝑋 ) = 𝑋 |
| 26 |
24 2 3 8 8 25
|
off |
⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐺 ) : 𝑋 ⟶ ℂ ) |
| 27 |
22 26 7
|
dvbss |
⊢ ( 𝜑 → dom ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ⊆ 𝑋 ) |
| 28 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐹 : 𝑋 ⟶ ℂ ) |
| 29 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑋 ⊆ 𝑆 ) |
| 30 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐺 : 𝑋 ⟶ ℂ ) |
| 31 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑆 ⊆ ℂ ) |
| 32 |
4
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ dom ( 𝑆 D 𝐹 ) ↔ 𝑥 ∈ 𝑋 ) ) |
| 33 |
32
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ dom ( 𝑆 D 𝐹 ) ) |
| 34 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑆 ∈ { ℝ , ℂ } ) |
| 35 |
|
ffun |
⊢ ( ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ → Fun ( 𝑆 D 𝐹 ) ) |
| 36 |
|
funfvbrb |
⊢ ( Fun ( 𝑆 D 𝐹 ) → ( 𝑥 ∈ dom ( 𝑆 D 𝐹 ) ↔ 𝑥 ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ) ) |
| 37 |
34 9 35 36
|
4syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ∈ dom ( 𝑆 D 𝐹 ) ↔ 𝑥 ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ) ) |
| 38 |
33 37
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ) |
| 39 |
5
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ dom ( 𝑆 D 𝐺 ) ↔ 𝑥 ∈ 𝑋 ) ) |
| 40 |
39
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ dom ( 𝑆 D 𝐺 ) ) |
| 41 |
|
ffun |
⊢ ( ( 𝑆 D 𝐺 ) : dom ( 𝑆 D 𝐺 ) ⟶ ℂ → Fun ( 𝑆 D 𝐺 ) ) |
| 42 |
|
funfvbrb |
⊢ ( Fun ( 𝑆 D 𝐺 ) → ( 𝑥 ∈ dom ( 𝑆 D 𝐺 ) ↔ 𝑥 ( 𝑆 D 𝐺 ) ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ) ) |
| 43 |
34 14 41 42
|
4syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ∈ dom ( 𝑆 D 𝐺 ) ↔ 𝑥 ( 𝑆 D 𝐺 ) ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ) ) |
| 44 |
40 43
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ( 𝑆 D 𝐺 ) ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ) |
| 45 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 46 |
28 29 30 29 31 38 44 45
|
dvaddbr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) + ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ) ) |
| 47 |
|
reldv |
⊢ Rel ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) |
| 48 |
47
|
releldmi |
⊢ ( 𝑥 ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) + ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ) → 𝑥 ∈ dom ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ) |
| 49 |
46 48
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ dom ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ) |
| 50 |
27 49
|
eqelssd |
⊢ ( 𝜑 → dom ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) = 𝑋 ) |
| 51 |
50
|
feq2d |
⊢ ( 𝜑 → ( ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) : dom ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ⟶ ℂ ↔ ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) : 𝑋 ⟶ ℂ ) ) |
| 52 |
20 51
|
mpbid |
⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) : 𝑋 ⟶ ℂ ) |
| 53 |
52
|
ffnd |
⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) Fn 𝑋 ) |
| 54 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) = ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ) |
| 55 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) = ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ) |
| 56 |
28 29 30 29 34 33 40
|
dvadd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ‘ 𝑥 ) = ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) + ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ) ) |
| 57 |
56
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) + ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ) = ( ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ‘ 𝑥 ) ) |
| 58 |
8 13 18 53 54 55 57
|
offveq |
⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) ∘f + ( 𝑆 D 𝐺 ) ) = ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ) |
| 59 |
58
|
eqcomd |
⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) = ( ( 𝑆 D 𝐹 ) ∘f + ( 𝑆 D 𝐺 ) ) ) |