Step |
Hyp |
Ref |
Expression |
1 |
|
dvaddf.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
2 |
|
dvaddf.f |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) |
3 |
|
dvaddf.g |
⊢ ( 𝜑 → 𝐺 : 𝑋 ⟶ ℂ ) |
4 |
|
dvaddf.df |
⊢ ( 𝜑 → dom ( 𝑆 D 𝐹 ) = 𝑋 ) |
5 |
|
dvaddf.dg |
⊢ ( 𝜑 → dom ( 𝑆 D 𝐺 ) = 𝑋 ) |
6 |
|
dvbsss |
⊢ dom ( 𝑆 D 𝐹 ) ⊆ 𝑆 |
7 |
4 6
|
eqsstrrdi |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) |
8 |
1 7
|
ssexd |
⊢ ( 𝜑 → 𝑋 ∈ V ) |
9 |
|
dvfg |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) |
10 |
1 9
|
syl |
⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) |
11 |
4
|
feq2d |
⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ↔ ( 𝑆 D 𝐹 ) : 𝑋 ⟶ ℂ ) ) |
12 |
10 11
|
mpbid |
⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) : 𝑋 ⟶ ℂ ) |
13 |
12
|
ffnd |
⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) Fn 𝑋 ) |
14 |
|
dvfg |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D 𝐺 ) : dom ( 𝑆 D 𝐺 ) ⟶ ℂ ) |
15 |
1 14
|
syl |
⊢ ( 𝜑 → ( 𝑆 D 𝐺 ) : dom ( 𝑆 D 𝐺 ) ⟶ ℂ ) |
16 |
5
|
feq2d |
⊢ ( 𝜑 → ( ( 𝑆 D 𝐺 ) : dom ( 𝑆 D 𝐺 ) ⟶ ℂ ↔ ( 𝑆 D 𝐺 ) : 𝑋 ⟶ ℂ ) ) |
17 |
15 16
|
mpbid |
⊢ ( 𝜑 → ( 𝑆 D 𝐺 ) : 𝑋 ⟶ ℂ ) |
18 |
17
|
ffnd |
⊢ ( 𝜑 → ( 𝑆 D 𝐺 ) Fn 𝑋 ) |
19 |
|
dvfg |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) : dom ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ⟶ ℂ ) |
20 |
1 19
|
syl |
⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) : dom ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ⟶ ℂ ) |
21 |
|
recnprss |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) |
22 |
1 21
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
23 |
|
addcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + 𝑦 ) ∈ ℂ ) |
24 |
23
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( 𝑥 + 𝑦 ) ∈ ℂ ) |
25 |
|
inidm |
⊢ ( 𝑋 ∩ 𝑋 ) = 𝑋 |
26 |
24 2 3 8 8 25
|
off |
⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐺 ) : 𝑋 ⟶ ℂ ) |
27 |
22 26 7
|
dvbss |
⊢ ( 𝜑 → dom ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ⊆ 𝑋 ) |
28 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐹 : 𝑋 ⟶ ℂ ) |
29 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑋 ⊆ 𝑆 ) |
30 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐺 : 𝑋 ⟶ ℂ ) |
31 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑆 ⊆ ℂ ) |
32 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ∈ V ) |
33 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ∈ V ) |
34 |
4
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ dom ( 𝑆 D 𝐹 ) ↔ 𝑥 ∈ 𝑋 ) ) |
35 |
34
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ dom ( 𝑆 D 𝐹 ) ) |
36 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑆 ∈ { ℝ , ℂ } ) |
37 |
|
ffun |
⊢ ( ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ → Fun ( 𝑆 D 𝐹 ) ) |
38 |
|
funfvbrb |
⊢ ( Fun ( 𝑆 D 𝐹 ) → ( 𝑥 ∈ dom ( 𝑆 D 𝐹 ) ↔ 𝑥 ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ) ) |
39 |
36 9 37 38
|
4syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ∈ dom ( 𝑆 D 𝐹 ) ↔ 𝑥 ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ) ) |
40 |
35 39
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ) |
41 |
5
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ dom ( 𝑆 D 𝐺 ) ↔ 𝑥 ∈ 𝑋 ) ) |
42 |
41
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ dom ( 𝑆 D 𝐺 ) ) |
43 |
|
ffun |
⊢ ( ( 𝑆 D 𝐺 ) : dom ( 𝑆 D 𝐺 ) ⟶ ℂ → Fun ( 𝑆 D 𝐺 ) ) |
44 |
|
funfvbrb |
⊢ ( Fun ( 𝑆 D 𝐺 ) → ( 𝑥 ∈ dom ( 𝑆 D 𝐺 ) ↔ 𝑥 ( 𝑆 D 𝐺 ) ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ) ) |
45 |
36 14 43 44
|
4syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ∈ dom ( 𝑆 D 𝐺 ) ↔ 𝑥 ( 𝑆 D 𝐺 ) ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ) ) |
46 |
42 45
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ( 𝑆 D 𝐺 ) ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ) |
47 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
48 |
28 29 30 29 31 32 33 40 46 47
|
dvaddbr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) + ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ) ) |
49 |
|
reldv |
⊢ Rel ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) |
50 |
49
|
releldmi |
⊢ ( 𝑥 ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) + ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ) → 𝑥 ∈ dom ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ) |
51 |
48 50
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ dom ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ) |
52 |
27 51
|
eqelssd |
⊢ ( 𝜑 → dom ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) = 𝑋 ) |
53 |
52
|
feq2d |
⊢ ( 𝜑 → ( ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) : dom ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ⟶ ℂ ↔ ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) : 𝑋 ⟶ ℂ ) ) |
54 |
20 53
|
mpbid |
⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) : 𝑋 ⟶ ℂ ) |
55 |
54
|
ffnd |
⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) Fn 𝑋 ) |
56 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) = ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ) |
57 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) = ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ) |
58 |
28 29 30 29 36 35 42
|
dvadd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ‘ 𝑥 ) = ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) + ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ) ) |
59 |
58
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) + ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ) = ( ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ‘ 𝑥 ) ) |
60 |
8 13 18 55 56 57 59
|
offveq |
⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) ∘f + ( 𝑆 D 𝐺 ) ) = ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) ) |
61 |
60
|
eqcomd |
⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ∘f + 𝐺 ) ) = ( ( 𝑆 D 𝐹 ) ∘f + ( 𝑆 D 𝐺 ) ) ) |