Metamath Proof Explorer


Theorem dvalvec

Description: The constructed partial vector space A for a lattice K is a left vector space. (Contributed by NM, 11-Oct-2013) (Revised by Mario Carneiro, 22-Jun-2014)

Ref Expression
Hypotheses dvalvec.h 𝐻 = ( LHyp ‘ 𝐾 )
dvalvec.v 𝑈 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 )
Assertion dvalvec ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝑈 ∈ LVec )

Proof

Step Hyp Ref Expression
1 dvalvec.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dvalvec.v 𝑈 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 )
3 eqid ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
4 eqid ( +g𝑈 ) = ( +g𝑈 )
5 eqid ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
6 eqid ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 )
7 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
8 eqid ( +g ‘ ( Scalar ‘ 𝑈 ) ) = ( +g ‘ ( Scalar ‘ 𝑈 ) )
9 eqid ( .r ‘ ( Scalar ‘ 𝑈 ) ) = ( .r ‘ ( Scalar ‘ 𝑈 ) )
10 eqid ( ·𝑠𝑈 ) = ( ·𝑠𝑈 )
11 1 2 3 4 5 6 7 8 9 10 dvalveclem ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝑈 ∈ LVec )