| Step | Hyp | Ref | Expression | 
						
							| 1 |  | atansopn.d | ⊢ 𝐷  =  ( ℂ  ∖  ( -∞ (,] 0 ) ) | 
						
							| 2 |  | atansopn.s | ⊢ 𝑆  =  { 𝑦  ∈  ℂ  ∣  ( 1  +  ( 𝑦 ↑ 2 ) )  ∈  𝐷 } | 
						
							| 3 |  | cnelprrecn | ⊢ ℂ  ∈  { ℝ ,  ℂ } | 
						
							| 4 | 3 | a1i | ⊢ ( ⊤  →  ℂ  ∈  { ℝ ,  ℂ } ) | 
						
							| 5 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 6 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 7 | 1 2 | atansssdm | ⊢ 𝑆  ⊆  dom  arctan | 
						
							| 8 |  | simpr | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  𝑥  ∈  𝑆 ) | 
						
							| 9 | 7 8 | sselid | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  𝑥  ∈  dom  arctan ) | 
						
							| 10 |  | atandm2 | ⊢ ( 𝑥  ∈  dom  arctan  ↔  ( 𝑥  ∈  ℂ  ∧  ( 1  −  ( i  ·  𝑥 ) )  ≠  0  ∧  ( 1  +  ( i  ·  𝑥 ) )  ≠  0 ) ) | 
						
							| 11 | 9 10 | sylib | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( 𝑥  ∈  ℂ  ∧  ( 1  −  ( i  ·  𝑥 ) )  ≠  0  ∧  ( 1  +  ( i  ·  𝑥 ) )  ≠  0 ) ) | 
						
							| 12 | 11 | simp1d | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  𝑥  ∈  ℂ ) | 
						
							| 13 |  | mulcl | ⊢ ( ( i  ∈  ℂ  ∧  𝑥  ∈  ℂ )  →  ( i  ·  𝑥 )  ∈  ℂ ) | 
						
							| 14 | 6 12 13 | sylancr | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( i  ·  𝑥 )  ∈  ℂ ) | 
						
							| 15 |  | subcl | ⊢ ( ( 1  ∈  ℂ  ∧  ( i  ·  𝑥 )  ∈  ℂ )  →  ( 1  −  ( i  ·  𝑥 ) )  ∈  ℂ ) | 
						
							| 16 | 5 14 15 | sylancr | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( 1  −  ( i  ·  𝑥 ) )  ∈  ℂ ) | 
						
							| 17 | 11 | simp2d | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( 1  −  ( i  ·  𝑥 ) )  ≠  0 ) | 
						
							| 18 | 16 17 | logcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( log ‘ ( 1  −  ( i  ·  𝑥 ) ) )  ∈  ℂ ) | 
						
							| 19 |  | addcl | ⊢ ( ( 1  ∈  ℂ  ∧  ( i  ·  𝑥 )  ∈  ℂ )  →  ( 1  +  ( i  ·  𝑥 ) )  ∈  ℂ ) | 
						
							| 20 | 5 14 19 | sylancr | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( 1  +  ( i  ·  𝑥 ) )  ∈  ℂ ) | 
						
							| 21 | 11 | simp3d | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( 1  +  ( i  ·  𝑥 ) )  ≠  0 ) | 
						
							| 22 | 20 21 | logcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( log ‘ ( 1  +  ( i  ·  𝑥 ) ) )  ∈  ℂ ) | 
						
							| 23 | 18 22 | subcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( ( log ‘ ( 1  −  ( i  ·  𝑥 ) ) )  −  ( log ‘ ( 1  +  ( i  ·  𝑥 ) ) ) )  ∈  ℂ ) | 
						
							| 24 |  | ovexd | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( ( 2  /  i )  /  ( 1  +  ( 𝑥 ↑ 2 ) ) )  ∈  V ) | 
						
							| 25 |  | ovexd | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( 1  /  ( 𝑥  +  i ) )  ∈  V ) | 
						
							| 26 | 1 2 | atans2 | ⊢ ( 𝑥  ∈  𝑆  ↔  ( 𝑥  ∈  ℂ  ∧  ( 1  −  ( i  ·  𝑥 ) )  ∈  𝐷  ∧  ( 1  +  ( i  ·  𝑥 ) )  ∈  𝐷 ) ) | 
						
							| 27 | 26 | simp2bi | ⊢ ( 𝑥  ∈  𝑆  →  ( 1  −  ( i  ·  𝑥 ) )  ∈  𝐷 ) | 
						
							| 28 | 27 | adantl | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( 1  −  ( i  ·  𝑥 ) )  ∈  𝐷 ) | 
						
							| 29 |  | negex | ⊢ - i  ∈  V | 
						
							| 30 | 29 | a1i | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  - i  ∈  V ) | 
						
							| 31 | 1 | logdmss | ⊢ 𝐷  ⊆  ( ℂ  ∖  { 0 } ) | 
						
							| 32 |  | simpr | ⊢ ( ( ⊤  ∧  𝑦  ∈  𝐷 )  →  𝑦  ∈  𝐷 ) | 
						
							| 33 | 31 32 | sselid | ⊢ ( ( ⊤  ∧  𝑦  ∈  𝐷 )  →  𝑦  ∈  ( ℂ  ∖  { 0 } ) ) | 
						
							| 34 |  | logf1o | ⊢ log : ( ℂ  ∖  { 0 } ) –1-1-onto→ ran  log | 
						
							| 35 |  | f1of | ⊢ ( log : ( ℂ  ∖  { 0 } ) –1-1-onto→ ran  log  →  log : ( ℂ  ∖  { 0 } ) ⟶ ran  log ) | 
						
							| 36 | 34 35 | ax-mp | ⊢ log : ( ℂ  ∖  { 0 } ) ⟶ ran  log | 
						
							| 37 | 36 | ffvelcdmi | ⊢ ( 𝑦  ∈  ( ℂ  ∖  { 0 } )  →  ( log ‘ 𝑦 )  ∈  ran  log ) | 
						
							| 38 |  | logrncn | ⊢ ( ( log ‘ 𝑦 )  ∈  ran  log  →  ( log ‘ 𝑦 )  ∈  ℂ ) | 
						
							| 39 | 33 37 38 | 3syl | ⊢ ( ( ⊤  ∧  𝑦  ∈  𝐷 )  →  ( log ‘ 𝑦 )  ∈  ℂ ) | 
						
							| 40 |  | ovexd | ⊢ ( ( ⊤  ∧  𝑦  ∈  𝐷 )  →  ( 1  /  𝑦 )  ∈  V ) | 
						
							| 41 | 6 | a1i | ⊢ ( ⊤  →  i  ∈  ℂ ) | 
						
							| 42 | 41 13 | sylan | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℂ )  →  ( i  ·  𝑥 )  ∈  ℂ ) | 
						
							| 43 | 5 42 15 | sylancr | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℂ )  →  ( 1  −  ( i  ·  𝑥 ) )  ∈  ℂ ) | 
						
							| 44 | 29 | a1i | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℂ )  →  - i  ∈  V ) | 
						
							| 45 |  | 1cnd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℂ )  →  1  ∈  ℂ ) | 
						
							| 46 |  | 0cnd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℂ )  →  0  ∈  ℂ ) | 
						
							| 47 |  | 1cnd | ⊢ ( ⊤  →  1  ∈  ℂ ) | 
						
							| 48 | 4 47 | dvmptc | ⊢ ( ⊤  →  ( ℂ  D  ( 𝑥  ∈  ℂ  ↦  1 ) )  =  ( 𝑥  ∈  ℂ  ↦  0 ) ) | 
						
							| 49 | 6 | a1i | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℂ )  →  i  ∈  ℂ ) | 
						
							| 50 |  | simpr | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℂ )  →  𝑥  ∈  ℂ ) | 
						
							| 51 | 4 | dvmptid | ⊢ ( ⊤  →  ( ℂ  D  ( 𝑥  ∈  ℂ  ↦  𝑥 ) )  =  ( 𝑥  ∈  ℂ  ↦  1 ) ) | 
						
							| 52 | 4 50 45 51 41 | dvmptcmul | ⊢ ( ⊤  →  ( ℂ  D  ( 𝑥  ∈  ℂ  ↦  ( i  ·  𝑥 ) ) )  =  ( 𝑥  ∈  ℂ  ↦  ( i  ·  1 ) ) ) | 
						
							| 53 | 6 | mulridi | ⊢ ( i  ·  1 )  =  i | 
						
							| 54 | 53 | mpteq2i | ⊢ ( 𝑥  ∈  ℂ  ↦  ( i  ·  1 ) )  =  ( 𝑥  ∈  ℂ  ↦  i ) | 
						
							| 55 | 52 54 | eqtrdi | ⊢ ( ⊤  →  ( ℂ  D  ( 𝑥  ∈  ℂ  ↦  ( i  ·  𝑥 ) ) )  =  ( 𝑥  ∈  ℂ  ↦  i ) ) | 
						
							| 56 | 4 45 46 48 42 49 55 | dvmptsub | ⊢ ( ⊤  →  ( ℂ  D  ( 𝑥  ∈  ℂ  ↦  ( 1  −  ( i  ·  𝑥 ) ) ) )  =  ( 𝑥  ∈  ℂ  ↦  ( 0  −  i ) ) ) | 
						
							| 57 |  | df-neg | ⊢ - i  =  ( 0  −  i ) | 
						
							| 58 | 57 | mpteq2i | ⊢ ( 𝑥  ∈  ℂ  ↦  - i )  =  ( 𝑥  ∈  ℂ  ↦  ( 0  −  i ) ) | 
						
							| 59 | 56 58 | eqtr4di | ⊢ ( ⊤  →  ( ℂ  D  ( 𝑥  ∈  ℂ  ↦  ( 1  −  ( i  ·  𝑥 ) ) ) )  =  ( 𝑥  ∈  ℂ  ↦  - i ) ) | 
						
							| 60 | 2 | ssrab3 | ⊢ 𝑆  ⊆  ℂ | 
						
							| 61 | 60 | a1i | ⊢ ( ⊤  →  𝑆  ⊆  ℂ ) | 
						
							| 62 |  | eqid | ⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 63 | 62 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ ) | 
						
							| 64 | 63 | toponrestid | ⊢ ( TopOpen ‘ ℂfld )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ℂ ) | 
						
							| 65 | 1 2 | atansopn | ⊢ 𝑆  ∈  ( TopOpen ‘ ℂfld ) | 
						
							| 66 | 65 | a1i | ⊢ ( ⊤  →  𝑆  ∈  ( TopOpen ‘ ℂfld ) ) | 
						
							| 67 | 4 43 44 59 61 64 62 66 | dvmptres | ⊢ ( ⊤  →  ( ℂ  D  ( 𝑥  ∈  𝑆  ↦  ( 1  −  ( i  ·  𝑥 ) ) ) )  =  ( 𝑥  ∈  𝑆  ↦  - i ) ) | 
						
							| 68 |  | fssres | ⊢ ( ( log : ( ℂ  ∖  { 0 } ) ⟶ ran  log  ∧  𝐷  ⊆  ( ℂ  ∖  { 0 } ) )  →  ( log  ↾  𝐷 ) : 𝐷 ⟶ ran  log ) | 
						
							| 69 | 36 31 68 | mp2an | ⊢ ( log  ↾  𝐷 ) : 𝐷 ⟶ ran  log | 
						
							| 70 | 69 | a1i | ⊢ ( ⊤  →  ( log  ↾  𝐷 ) : 𝐷 ⟶ ran  log ) | 
						
							| 71 | 70 | feqmptd | ⊢ ( ⊤  →  ( log  ↾  𝐷 )  =  ( 𝑦  ∈  𝐷  ↦  ( ( log  ↾  𝐷 ) ‘ 𝑦 ) ) ) | 
						
							| 72 |  | fvres | ⊢ ( 𝑦  ∈  𝐷  →  ( ( log  ↾  𝐷 ) ‘ 𝑦 )  =  ( log ‘ 𝑦 ) ) | 
						
							| 73 | 72 | mpteq2ia | ⊢ ( 𝑦  ∈  𝐷  ↦  ( ( log  ↾  𝐷 ) ‘ 𝑦 ) )  =  ( 𝑦  ∈  𝐷  ↦  ( log ‘ 𝑦 ) ) | 
						
							| 74 | 71 73 | eqtr2di | ⊢ ( ⊤  →  ( 𝑦  ∈  𝐷  ↦  ( log ‘ 𝑦 ) )  =  ( log  ↾  𝐷 ) ) | 
						
							| 75 | 74 | oveq2d | ⊢ ( ⊤  →  ( ℂ  D  ( 𝑦  ∈  𝐷  ↦  ( log ‘ 𝑦 ) ) )  =  ( ℂ  D  ( log  ↾  𝐷 ) ) ) | 
						
							| 76 | 1 | dvlog | ⊢ ( ℂ  D  ( log  ↾  𝐷 ) )  =  ( 𝑦  ∈  𝐷  ↦  ( 1  /  𝑦 ) ) | 
						
							| 77 | 75 76 | eqtrdi | ⊢ ( ⊤  →  ( ℂ  D  ( 𝑦  ∈  𝐷  ↦  ( log ‘ 𝑦 ) ) )  =  ( 𝑦  ∈  𝐷  ↦  ( 1  /  𝑦 ) ) ) | 
						
							| 78 |  | fveq2 | ⊢ ( 𝑦  =  ( 1  −  ( i  ·  𝑥 ) )  →  ( log ‘ 𝑦 )  =  ( log ‘ ( 1  −  ( i  ·  𝑥 ) ) ) ) | 
						
							| 79 |  | oveq2 | ⊢ ( 𝑦  =  ( 1  −  ( i  ·  𝑥 ) )  →  ( 1  /  𝑦 )  =  ( 1  /  ( 1  −  ( i  ·  𝑥 ) ) ) ) | 
						
							| 80 | 4 4 28 30 39 40 67 77 78 79 | dvmptco | ⊢ ( ⊤  →  ( ℂ  D  ( 𝑥  ∈  𝑆  ↦  ( log ‘ ( 1  −  ( i  ·  𝑥 ) ) ) ) )  =  ( 𝑥  ∈  𝑆  ↦  ( ( 1  /  ( 1  −  ( i  ·  𝑥 ) ) )  ·  - i ) ) ) | 
						
							| 81 |  | irec | ⊢ ( 1  /  i )  =  - i | 
						
							| 82 | 81 | oveq2i | ⊢ ( ( 1  /  ( 1  −  ( i  ·  𝑥 ) ) )  ·  ( 1  /  i ) )  =  ( ( 1  /  ( 1  −  ( i  ·  𝑥 ) ) )  ·  - i ) | 
						
							| 83 | 6 | a1i | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  i  ∈  ℂ ) | 
						
							| 84 |  | ine0 | ⊢ i  ≠  0 | 
						
							| 85 | 84 | a1i | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  i  ≠  0 ) | 
						
							| 86 | 16 83 17 85 | recdiv2d | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( ( 1  /  ( 1  −  ( i  ·  𝑥 ) ) )  /  i )  =  ( 1  /  ( ( 1  −  ( i  ·  𝑥 ) )  ·  i ) ) ) | 
						
							| 87 | 16 17 | reccld | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( 1  /  ( 1  −  ( i  ·  𝑥 ) ) )  ∈  ℂ ) | 
						
							| 88 | 87 83 85 | divrecd | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( ( 1  /  ( 1  −  ( i  ·  𝑥 ) ) )  /  i )  =  ( ( 1  /  ( 1  −  ( i  ·  𝑥 ) ) )  ·  ( 1  /  i ) ) ) | 
						
							| 89 |  | 1cnd | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  1  ∈  ℂ ) | 
						
							| 90 | 89 14 83 | subdird | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( ( 1  −  ( i  ·  𝑥 ) )  ·  i )  =  ( ( 1  ·  i )  −  ( ( i  ·  𝑥 )  ·  i ) ) ) | 
						
							| 91 | 6 | mullidi | ⊢ ( 1  ·  i )  =  i | 
						
							| 92 | 91 | a1i | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( 1  ·  i )  =  i ) | 
						
							| 93 | 83 12 83 | mul32d | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( ( i  ·  𝑥 )  ·  i )  =  ( ( i  ·  i )  ·  𝑥 ) ) | 
						
							| 94 |  | ixi | ⊢ ( i  ·  i )  =  - 1 | 
						
							| 95 | 94 | oveq1i | ⊢ ( ( i  ·  i )  ·  𝑥 )  =  ( - 1  ·  𝑥 ) | 
						
							| 96 | 12 | mulm1d | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( - 1  ·  𝑥 )  =  - 𝑥 ) | 
						
							| 97 | 95 96 | eqtrid | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( ( i  ·  i )  ·  𝑥 )  =  - 𝑥 ) | 
						
							| 98 | 93 97 | eqtrd | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( ( i  ·  𝑥 )  ·  i )  =  - 𝑥 ) | 
						
							| 99 | 92 98 | oveq12d | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( ( 1  ·  i )  −  ( ( i  ·  𝑥 )  ·  i ) )  =  ( i  −  - 𝑥 ) ) | 
						
							| 100 |  | subneg | ⊢ ( ( i  ∈  ℂ  ∧  𝑥  ∈  ℂ )  →  ( i  −  - 𝑥 )  =  ( i  +  𝑥 ) ) | 
						
							| 101 | 6 12 100 | sylancr | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( i  −  - 𝑥 )  =  ( i  +  𝑥 ) ) | 
						
							| 102 | 90 99 101 | 3eqtrd | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( ( 1  −  ( i  ·  𝑥 ) )  ·  i )  =  ( i  +  𝑥 ) ) | 
						
							| 103 | 83 12 102 | comraddd | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( ( 1  −  ( i  ·  𝑥 ) )  ·  i )  =  ( 𝑥  +  i ) ) | 
						
							| 104 | 103 | oveq2d | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( 1  /  ( ( 1  −  ( i  ·  𝑥 ) )  ·  i ) )  =  ( 1  /  ( 𝑥  +  i ) ) ) | 
						
							| 105 | 86 88 104 | 3eqtr3d | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( ( 1  /  ( 1  −  ( i  ·  𝑥 ) ) )  ·  ( 1  /  i ) )  =  ( 1  /  ( 𝑥  +  i ) ) ) | 
						
							| 106 | 82 105 | eqtr3id | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( ( 1  /  ( 1  −  ( i  ·  𝑥 ) ) )  ·  - i )  =  ( 1  /  ( 𝑥  +  i ) ) ) | 
						
							| 107 | 106 | mpteq2dva | ⊢ ( ⊤  →  ( 𝑥  ∈  𝑆  ↦  ( ( 1  /  ( 1  −  ( i  ·  𝑥 ) ) )  ·  - i ) )  =  ( 𝑥  ∈  𝑆  ↦  ( 1  /  ( 𝑥  +  i ) ) ) ) | 
						
							| 108 | 80 107 | eqtrd | ⊢ ( ⊤  →  ( ℂ  D  ( 𝑥  ∈  𝑆  ↦  ( log ‘ ( 1  −  ( i  ·  𝑥 ) ) ) ) )  =  ( 𝑥  ∈  𝑆  ↦  ( 1  /  ( 𝑥  +  i ) ) ) ) | 
						
							| 109 |  | ovexd | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( 1  /  ( 𝑥  −  i ) )  ∈  V ) | 
						
							| 110 | 26 | simp3bi | ⊢ ( 𝑥  ∈  𝑆  →  ( 1  +  ( i  ·  𝑥 ) )  ∈  𝐷 ) | 
						
							| 111 | 110 | adantl | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( 1  +  ( i  ·  𝑥 ) )  ∈  𝐷 ) | 
						
							| 112 | 5 42 19 | sylancr | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℂ )  →  ( 1  +  ( i  ·  𝑥 ) )  ∈  ℂ ) | 
						
							| 113 | 4 45 46 48 42 49 55 | dvmptadd | ⊢ ( ⊤  →  ( ℂ  D  ( 𝑥  ∈  ℂ  ↦  ( 1  +  ( i  ·  𝑥 ) ) ) )  =  ( 𝑥  ∈  ℂ  ↦  ( 0  +  i ) ) ) | 
						
							| 114 | 6 | addlidi | ⊢ ( 0  +  i )  =  i | 
						
							| 115 | 114 | mpteq2i | ⊢ ( 𝑥  ∈  ℂ  ↦  ( 0  +  i ) )  =  ( 𝑥  ∈  ℂ  ↦  i ) | 
						
							| 116 | 113 115 | eqtrdi | ⊢ ( ⊤  →  ( ℂ  D  ( 𝑥  ∈  ℂ  ↦  ( 1  +  ( i  ·  𝑥 ) ) ) )  =  ( 𝑥  ∈  ℂ  ↦  i ) ) | 
						
							| 117 | 4 112 49 116 61 64 62 66 | dvmptres | ⊢ ( ⊤  →  ( ℂ  D  ( 𝑥  ∈  𝑆  ↦  ( 1  +  ( i  ·  𝑥 ) ) ) )  =  ( 𝑥  ∈  𝑆  ↦  i ) ) | 
						
							| 118 |  | fveq2 | ⊢ ( 𝑦  =  ( 1  +  ( i  ·  𝑥 ) )  →  ( log ‘ 𝑦 )  =  ( log ‘ ( 1  +  ( i  ·  𝑥 ) ) ) ) | 
						
							| 119 |  | oveq2 | ⊢ ( 𝑦  =  ( 1  +  ( i  ·  𝑥 ) )  →  ( 1  /  𝑦 )  =  ( 1  /  ( 1  +  ( i  ·  𝑥 ) ) ) ) | 
						
							| 120 | 4 4 111 83 39 40 117 77 118 119 | dvmptco | ⊢ ( ⊤  →  ( ℂ  D  ( 𝑥  ∈  𝑆  ↦  ( log ‘ ( 1  +  ( i  ·  𝑥 ) ) ) ) )  =  ( 𝑥  ∈  𝑆  ↦  ( ( 1  /  ( 1  +  ( i  ·  𝑥 ) ) )  ·  i ) ) ) | 
						
							| 121 | 89 20 83 21 85 | divdiv2d | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( 1  /  ( ( 1  +  ( i  ·  𝑥 ) )  /  i ) )  =  ( ( 1  ·  i )  /  ( 1  +  ( i  ·  𝑥 ) ) ) ) | 
						
							| 122 | 89 14 83 85 | divdird | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( ( 1  +  ( i  ·  𝑥 ) )  /  i )  =  ( ( 1  /  i )  +  ( ( i  ·  𝑥 )  /  i ) ) ) | 
						
							| 123 | 81 | a1i | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( 1  /  i )  =  - i ) | 
						
							| 124 | 12 83 85 | divcan3d | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( ( i  ·  𝑥 )  /  i )  =  𝑥 ) | 
						
							| 125 | 123 124 | oveq12d | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( ( 1  /  i )  +  ( ( i  ·  𝑥 )  /  i ) )  =  ( - i  +  𝑥 ) ) | 
						
							| 126 |  | negicn | ⊢ - i  ∈  ℂ | 
						
							| 127 |  | addcom | ⊢ ( ( - i  ∈  ℂ  ∧  𝑥  ∈  ℂ )  →  ( - i  +  𝑥 )  =  ( 𝑥  +  - i ) ) | 
						
							| 128 | 126 12 127 | sylancr | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( - i  +  𝑥 )  =  ( 𝑥  +  - i ) ) | 
						
							| 129 |  | negsub | ⊢ ( ( 𝑥  ∈  ℂ  ∧  i  ∈  ℂ )  →  ( 𝑥  +  - i )  =  ( 𝑥  −  i ) ) | 
						
							| 130 | 12 6 129 | sylancl | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( 𝑥  +  - i )  =  ( 𝑥  −  i ) ) | 
						
							| 131 | 128 130 | eqtrd | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( - i  +  𝑥 )  =  ( 𝑥  −  i ) ) | 
						
							| 132 | 122 125 131 | 3eqtrd | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( ( 1  +  ( i  ·  𝑥 ) )  /  i )  =  ( 𝑥  −  i ) ) | 
						
							| 133 | 132 | oveq2d | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( 1  /  ( ( 1  +  ( i  ·  𝑥 ) )  /  i ) )  =  ( 1  /  ( 𝑥  −  i ) ) ) | 
						
							| 134 | 89 83 20 21 | div23d | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( ( 1  ·  i )  /  ( 1  +  ( i  ·  𝑥 ) ) )  =  ( ( 1  /  ( 1  +  ( i  ·  𝑥 ) ) )  ·  i ) ) | 
						
							| 135 | 121 133 134 | 3eqtr3rd | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( ( 1  /  ( 1  +  ( i  ·  𝑥 ) ) )  ·  i )  =  ( 1  /  ( 𝑥  −  i ) ) ) | 
						
							| 136 | 135 | mpteq2dva | ⊢ ( ⊤  →  ( 𝑥  ∈  𝑆  ↦  ( ( 1  /  ( 1  +  ( i  ·  𝑥 ) ) )  ·  i ) )  =  ( 𝑥  ∈  𝑆  ↦  ( 1  /  ( 𝑥  −  i ) ) ) ) | 
						
							| 137 | 120 136 | eqtrd | ⊢ ( ⊤  →  ( ℂ  D  ( 𝑥  ∈  𝑆  ↦  ( log ‘ ( 1  +  ( i  ·  𝑥 ) ) ) ) )  =  ( 𝑥  ∈  𝑆  ↦  ( 1  /  ( 𝑥  −  i ) ) ) ) | 
						
							| 138 | 4 18 25 108 22 109 137 | dvmptsub | ⊢ ( ⊤  →  ( ℂ  D  ( 𝑥  ∈  𝑆  ↦  ( ( log ‘ ( 1  −  ( i  ·  𝑥 ) ) )  −  ( log ‘ ( 1  +  ( i  ·  𝑥 ) ) ) ) ) )  =  ( 𝑥  ∈  𝑆  ↦  ( ( 1  /  ( 𝑥  +  i ) )  −  ( 1  /  ( 𝑥  −  i ) ) ) ) ) | 
						
							| 139 |  | subcl | ⊢ ( ( 𝑥  ∈  ℂ  ∧  i  ∈  ℂ )  →  ( 𝑥  −  i )  ∈  ℂ ) | 
						
							| 140 | 12 6 139 | sylancl | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( 𝑥  −  i )  ∈  ℂ ) | 
						
							| 141 |  | addcl | ⊢ ( ( 𝑥  ∈  ℂ  ∧  i  ∈  ℂ )  →  ( 𝑥  +  i )  ∈  ℂ ) | 
						
							| 142 | 12 6 141 | sylancl | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( 𝑥  +  i )  ∈  ℂ ) | 
						
							| 143 | 12 | sqcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( 𝑥 ↑ 2 )  ∈  ℂ ) | 
						
							| 144 |  | addcl | ⊢ ( ( 1  ∈  ℂ  ∧  ( 𝑥 ↑ 2 )  ∈  ℂ )  →  ( 1  +  ( 𝑥 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 145 | 5 143 144 | sylancr | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( 1  +  ( 𝑥 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 146 |  | atandm4 | ⊢ ( 𝑥  ∈  dom  arctan  ↔  ( 𝑥  ∈  ℂ  ∧  ( 1  +  ( 𝑥 ↑ 2 ) )  ≠  0 ) ) | 
						
							| 147 | 146 | simprbi | ⊢ ( 𝑥  ∈  dom  arctan  →  ( 1  +  ( 𝑥 ↑ 2 ) )  ≠  0 ) | 
						
							| 148 | 9 147 | syl | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( 1  +  ( 𝑥 ↑ 2 ) )  ≠  0 ) | 
						
							| 149 | 140 142 145 148 | divsubdird | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( ( ( 𝑥  −  i )  −  ( 𝑥  +  i ) )  /  ( 1  +  ( 𝑥 ↑ 2 ) ) )  =  ( ( ( 𝑥  −  i )  /  ( 1  +  ( 𝑥 ↑ 2 ) ) )  −  ( ( 𝑥  +  i )  /  ( 1  +  ( 𝑥 ↑ 2 ) ) ) ) ) | 
						
							| 150 | 130 | oveq1d | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( ( 𝑥  +  - i )  −  ( 𝑥  +  i ) )  =  ( ( 𝑥  −  i )  −  ( 𝑥  +  i ) ) ) | 
						
							| 151 | 126 | a1i | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  - i  ∈  ℂ ) | 
						
							| 152 | 12 151 83 | pnpcand | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( ( 𝑥  +  - i )  −  ( 𝑥  +  i ) )  =  ( - i  −  i ) ) | 
						
							| 153 | 150 152 | eqtr3d | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( ( 𝑥  −  i )  −  ( 𝑥  +  i ) )  =  ( - i  −  i ) ) | 
						
							| 154 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 155 | 154 6 84 | divreci | ⊢ ( 2  /  i )  =  ( 2  ·  ( 1  /  i ) ) | 
						
							| 156 | 81 | oveq2i | ⊢ ( 2  ·  ( 1  /  i ) )  =  ( 2  ·  - i ) | 
						
							| 157 | 155 156 | eqtri | ⊢ ( 2  /  i )  =  ( 2  ·  - i ) | 
						
							| 158 | 126 | 2timesi | ⊢ ( 2  ·  - i )  =  ( - i  +  - i ) | 
						
							| 159 | 126 6 | negsubi | ⊢ ( - i  +  - i )  =  ( - i  −  i ) | 
						
							| 160 | 157 158 159 | 3eqtri | ⊢ ( 2  /  i )  =  ( - i  −  i ) | 
						
							| 161 | 153 160 | eqtr4di | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( ( 𝑥  −  i )  −  ( 𝑥  +  i ) )  =  ( 2  /  i ) ) | 
						
							| 162 | 161 | oveq1d | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( ( ( 𝑥  −  i )  −  ( 𝑥  +  i ) )  /  ( 1  +  ( 𝑥 ↑ 2 ) ) )  =  ( ( 2  /  i )  /  ( 1  +  ( 𝑥 ↑ 2 ) ) ) ) | 
						
							| 163 | 140 | mulridd | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( ( 𝑥  −  i )  ·  1 )  =  ( 𝑥  −  i ) ) | 
						
							| 164 | 140 142 | mulcomd | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( ( 𝑥  −  i )  ·  ( 𝑥  +  i ) )  =  ( ( 𝑥  +  i )  ·  ( 𝑥  −  i ) ) ) | 
						
							| 165 |  | i2 | ⊢ ( i ↑ 2 )  =  - 1 | 
						
							| 166 | 165 | oveq2i | ⊢ ( ( 𝑥 ↑ 2 )  −  ( i ↑ 2 ) )  =  ( ( 𝑥 ↑ 2 )  −  - 1 ) | 
						
							| 167 |  | subneg | ⊢ ( ( ( 𝑥 ↑ 2 )  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑥 ↑ 2 )  −  - 1 )  =  ( ( 𝑥 ↑ 2 )  +  1 ) ) | 
						
							| 168 | 143 5 167 | sylancl | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( ( 𝑥 ↑ 2 )  −  - 1 )  =  ( ( 𝑥 ↑ 2 )  +  1 ) ) | 
						
							| 169 | 166 168 | eqtrid | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( ( 𝑥 ↑ 2 )  −  ( i ↑ 2 ) )  =  ( ( 𝑥 ↑ 2 )  +  1 ) ) | 
						
							| 170 |  | subsq | ⊢ ( ( 𝑥  ∈  ℂ  ∧  i  ∈  ℂ )  →  ( ( 𝑥 ↑ 2 )  −  ( i ↑ 2 ) )  =  ( ( 𝑥  +  i )  ·  ( 𝑥  −  i ) ) ) | 
						
							| 171 | 12 6 170 | sylancl | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( ( 𝑥 ↑ 2 )  −  ( i ↑ 2 ) )  =  ( ( 𝑥  +  i )  ·  ( 𝑥  −  i ) ) ) | 
						
							| 172 |  | addcom | ⊢ ( ( ( 𝑥 ↑ 2 )  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑥 ↑ 2 )  +  1 )  =  ( 1  +  ( 𝑥 ↑ 2 ) ) ) | 
						
							| 173 | 143 5 172 | sylancl | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( ( 𝑥 ↑ 2 )  +  1 )  =  ( 1  +  ( 𝑥 ↑ 2 ) ) ) | 
						
							| 174 | 169 171 173 | 3eqtr3d | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( ( 𝑥  +  i )  ·  ( 𝑥  −  i ) )  =  ( 1  +  ( 𝑥 ↑ 2 ) ) ) | 
						
							| 175 | 164 174 | eqtrd | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( ( 𝑥  −  i )  ·  ( 𝑥  +  i ) )  =  ( 1  +  ( 𝑥 ↑ 2 ) ) ) | 
						
							| 176 | 163 175 | oveq12d | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( ( ( 𝑥  −  i )  ·  1 )  /  ( ( 𝑥  −  i )  ·  ( 𝑥  +  i ) ) )  =  ( ( 𝑥  −  i )  /  ( 1  +  ( 𝑥 ↑ 2 ) ) ) ) | 
						
							| 177 |  | subneg | ⊢ ( ( 𝑥  ∈  ℂ  ∧  i  ∈  ℂ )  →  ( 𝑥  −  - i )  =  ( 𝑥  +  i ) ) | 
						
							| 178 | 12 6 177 | sylancl | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( 𝑥  −  - i )  =  ( 𝑥  +  i ) ) | 
						
							| 179 |  | atandm | ⊢ ( 𝑥  ∈  dom  arctan  ↔  ( 𝑥  ∈  ℂ  ∧  𝑥  ≠  - i  ∧  𝑥  ≠  i ) ) | 
						
							| 180 | 9 179 | sylib | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( 𝑥  ∈  ℂ  ∧  𝑥  ≠  - i  ∧  𝑥  ≠  i ) ) | 
						
							| 181 | 180 | simp2d | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  𝑥  ≠  - i ) | 
						
							| 182 |  | subeq0 | ⊢ ( ( 𝑥  ∈  ℂ  ∧  - i  ∈  ℂ )  →  ( ( 𝑥  −  - i )  =  0  ↔  𝑥  =  - i ) ) | 
						
							| 183 | 182 | necon3bid | ⊢ ( ( 𝑥  ∈  ℂ  ∧  - i  ∈  ℂ )  →  ( ( 𝑥  −  - i )  ≠  0  ↔  𝑥  ≠  - i ) ) | 
						
							| 184 | 12 126 183 | sylancl | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( ( 𝑥  −  - i )  ≠  0  ↔  𝑥  ≠  - i ) ) | 
						
							| 185 | 181 184 | mpbird | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( 𝑥  −  - i )  ≠  0 ) | 
						
							| 186 | 178 185 | eqnetrrd | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( 𝑥  +  i )  ≠  0 ) | 
						
							| 187 | 180 | simp3d | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  𝑥  ≠  i ) | 
						
							| 188 |  | subeq0 | ⊢ ( ( 𝑥  ∈  ℂ  ∧  i  ∈  ℂ )  →  ( ( 𝑥  −  i )  =  0  ↔  𝑥  =  i ) ) | 
						
							| 189 | 188 | necon3bid | ⊢ ( ( 𝑥  ∈  ℂ  ∧  i  ∈  ℂ )  →  ( ( 𝑥  −  i )  ≠  0  ↔  𝑥  ≠  i ) ) | 
						
							| 190 | 12 6 189 | sylancl | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( ( 𝑥  −  i )  ≠  0  ↔  𝑥  ≠  i ) ) | 
						
							| 191 | 187 190 | mpbird | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( 𝑥  −  i )  ≠  0 ) | 
						
							| 192 | 89 142 140 186 191 | divcan5d | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( ( ( 𝑥  −  i )  ·  1 )  /  ( ( 𝑥  −  i )  ·  ( 𝑥  +  i ) ) )  =  ( 1  /  ( 𝑥  +  i ) ) ) | 
						
							| 193 | 176 192 | eqtr3d | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( ( 𝑥  −  i )  /  ( 1  +  ( 𝑥 ↑ 2 ) ) )  =  ( 1  /  ( 𝑥  +  i ) ) ) | 
						
							| 194 | 142 | mulridd | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( ( 𝑥  +  i )  ·  1 )  =  ( 𝑥  +  i ) ) | 
						
							| 195 | 194 174 | oveq12d | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( ( ( 𝑥  +  i )  ·  1 )  /  ( ( 𝑥  +  i )  ·  ( 𝑥  −  i ) ) )  =  ( ( 𝑥  +  i )  /  ( 1  +  ( 𝑥 ↑ 2 ) ) ) ) | 
						
							| 196 | 89 140 142 191 186 | divcan5d | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( ( ( 𝑥  +  i )  ·  1 )  /  ( ( 𝑥  +  i )  ·  ( 𝑥  −  i ) ) )  =  ( 1  /  ( 𝑥  −  i ) ) ) | 
						
							| 197 | 195 196 | eqtr3d | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( ( 𝑥  +  i )  /  ( 1  +  ( 𝑥 ↑ 2 ) ) )  =  ( 1  /  ( 𝑥  −  i ) ) ) | 
						
							| 198 | 193 197 | oveq12d | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( ( ( 𝑥  −  i )  /  ( 1  +  ( 𝑥 ↑ 2 ) ) )  −  ( ( 𝑥  +  i )  /  ( 1  +  ( 𝑥 ↑ 2 ) ) ) )  =  ( ( 1  /  ( 𝑥  +  i ) )  −  ( 1  /  ( 𝑥  −  i ) ) ) ) | 
						
							| 199 | 149 162 198 | 3eqtr3rd | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( ( 1  /  ( 𝑥  +  i ) )  −  ( 1  /  ( 𝑥  −  i ) ) )  =  ( ( 2  /  i )  /  ( 1  +  ( 𝑥 ↑ 2 ) ) ) ) | 
						
							| 200 | 199 | mpteq2dva | ⊢ ( ⊤  →  ( 𝑥  ∈  𝑆  ↦  ( ( 1  /  ( 𝑥  +  i ) )  −  ( 1  /  ( 𝑥  −  i ) ) ) )  =  ( 𝑥  ∈  𝑆  ↦  ( ( 2  /  i )  /  ( 1  +  ( 𝑥 ↑ 2 ) ) ) ) ) | 
						
							| 201 | 138 200 | eqtrd | ⊢ ( ⊤  →  ( ℂ  D  ( 𝑥  ∈  𝑆  ↦  ( ( log ‘ ( 1  −  ( i  ·  𝑥 ) ) )  −  ( log ‘ ( 1  +  ( i  ·  𝑥 ) ) ) ) ) )  =  ( 𝑥  ∈  𝑆  ↦  ( ( 2  /  i )  /  ( 1  +  ( 𝑥 ↑ 2 ) ) ) ) ) | 
						
							| 202 |  | halfcl | ⊢ ( i  ∈  ℂ  →  ( i  /  2 )  ∈  ℂ ) | 
						
							| 203 | 6 202 | mp1i | ⊢ ( ⊤  →  ( i  /  2 )  ∈  ℂ ) | 
						
							| 204 | 4 23 24 201 203 | dvmptcmul | ⊢ ( ⊤  →  ( ℂ  D  ( 𝑥  ∈  𝑆  ↦  ( ( i  /  2 )  ·  ( ( log ‘ ( 1  −  ( i  ·  𝑥 ) ) )  −  ( log ‘ ( 1  +  ( i  ·  𝑥 ) ) ) ) ) ) )  =  ( 𝑥  ∈  𝑆  ↦  ( ( i  /  2 )  ·  ( ( 2  /  i )  /  ( 1  +  ( 𝑥 ↑ 2 ) ) ) ) ) ) | 
						
							| 205 |  | df-atan | ⊢ arctan  =  ( 𝑥  ∈  ( ℂ  ∖  { - i ,  i } )  ↦  ( ( i  /  2 )  ·  ( ( log ‘ ( 1  −  ( i  ·  𝑥 ) ) )  −  ( log ‘ ( 1  +  ( i  ·  𝑥 ) ) ) ) ) ) | 
						
							| 206 | 205 | reseq1i | ⊢ ( arctan  ↾  𝑆 )  =  ( ( 𝑥  ∈  ( ℂ  ∖  { - i ,  i } )  ↦  ( ( i  /  2 )  ·  ( ( log ‘ ( 1  −  ( i  ·  𝑥 ) ) )  −  ( log ‘ ( 1  +  ( i  ·  𝑥 ) ) ) ) ) )  ↾  𝑆 ) | 
						
							| 207 |  | atanf | ⊢ arctan : ( ℂ  ∖  { - i ,  i } ) ⟶ ℂ | 
						
							| 208 | 207 | fdmi | ⊢ dom  arctan  =  ( ℂ  ∖  { - i ,  i } ) | 
						
							| 209 | 7 208 | sseqtri | ⊢ 𝑆  ⊆  ( ℂ  ∖  { - i ,  i } ) | 
						
							| 210 |  | resmpt | ⊢ ( 𝑆  ⊆  ( ℂ  ∖  { - i ,  i } )  →  ( ( 𝑥  ∈  ( ℂ  ∖  { - i ,  i } )  ↦  ( ( i  /  2 )  ·  ( ( log ‘ ( 1  −  ( i  ·  𝑥 ) ) )  −  ( log ‘ ( 1  +  ( i  ·  𝑥 ) ) ) ) ) )  ↾  𝑆 )  =  ( 𝑥  ∈  𝑆  ↦  ( ( i  /  2 )  ·  ( ( log ‘ ( 1  −  ( i  ·  𝑥 ) ) )  −  ( log ‘ ( 1  +  ( i  ·  𝑥 ) ) ) ) ) ) ) | 
						
							| 211 | 209 210 | ax-mp | ⊢ ( ( 𝑥  ∈  ( ℂ  ∖  { - i ,  i } )  ↦  ( ( i  /  2 )  ·  ( ( log ‘ ( 1  −  ( i  ·  𝑥 ) ) )  −  ( log ‘ ( 1  +  ( i  ·  𝑥 ) ) ) ) ) )  ↾  𝑆 )  =  ( 𝑥  ∈  𝑆  ↦  ( ( i  /  2 )  ·  ( ( log ‘ ( 1  −  ( i  ·  𝑥 ) ) )  −  ( log ‘ ( 1  +  ( i  ·  𝑥 ) ) ) ) ) ) | 
						
							| 212 | 206 211 | eqtri | ⊢ ( arctan  ↾  𝑆 )  =  ( 𝑥  ∈  𝑆  ↦  ( ( i  /  2 )  ·  ( ( log ‘ ( 1  −  ( i  ·  𝑥 ) ) )  −  ( log ‘ ( 1  +  ( i  ·  𝑥 ) ) ) ) ) ) | 
						
							| 213 | 212 | a1i | ⊢ ( ⊤  →  ( arctan  ↾  𝑆 )  =  ( 𝑥  ∈  𝑆  ↦  ( ( i  /  2 )  ·  ( ( log ‘ ( 1  −  ( i  ·  𝑥 ) ) )  −  ( log ‘ ( 1  +  ( i  ·  𝑥 ) ) ) ) ) ) ) | 
						
							| 214 | 213 | oveq2d | ⊢ ( ⊤  →  ( ℂ  D  ( arctan  ↾  𝑆 ) )  =  ( ℂ  D  ( 𝑥  ∈  𝑆  ↦  ( ( i  /  2 )  ·  ( ( log ‘ ( 1  −  ( i  ·  𝑥 ) ) )  −  ( log ‘ ( 1  +  ( i  ·  𝑥 ) ) ) ) ) ) ) ) | 
						
							| 215 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 216 |  | divcan6 | ⊢ ( ( ( i  ∈  ℂ  ∧  i  ≠  0 )  ∧  ( 2  ∈  ℂ  ∧  2  ≠  0 ) )  →  ( ( i  /  2 )  ·  ( 2  /  i ) )  =  1 ) | 
						
							| 217 | 6 84 154 215 216 | mp4an | ⊢ ( ( i  /  2 )  ·  ( 2  /  i ) )  =  1 | 
						
							| 218 | 217 | oveq1i | ⊢ ( ( ( i  /  2 )  ·  ( 2  /  i ) )  /  ( 1  +  ( 𝑥 ↑ 2 ) ) )  =  ( 1  /  ( 1  +  ( 𝑥 ↑ 2 ) ) ) | 
						
							| 219 | 6 202 | mp1i | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( i  /  2 )  ∈  ℂ ) | 
						
							| 220 | 154 6 84 | divcli | ⊢ ( 2  /  i )  ∈  ℂ | 
						
							| 221 | 220 | a1i | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( 2  /  i )  ∈  ℂ ) | 
						
							| 222 | 219 221 145 148 | divassd | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( ( ( i  /  2 )  ·  ( 2  /  i ) )  /  ( 1  +  ( 𝑥 ↑ 2 ) ) )  =  ( ( i  /  2 )  ·  ( ( 2  /  i )  /  ( 1  +  ( 𝑥 ↑ 2 ) ) ) ) ) | 
						
							| 223 | 218 222 | eqtr3id | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝑆 )  →  ( 1  /  ( 1  +  ( 𝑥 ↑ 2 ) ) )  =  ( ( i  /  2 )  ·  ( ( 2  /  i )  /  ( 1  +  ( 𝑥 ↑ 2 ) ) ) ) ) | 
						
							| 224 | 223 | mpteq2dva | ⊢ ( ⊤  →  ( 𝑥  ∈  𝑆  ↦  ( 1  /  ( 1  +  ( 𝑥 ↑ 2 ) ) ) )  =  ( 𝑥  ∈  𝑆  ↦  ( ( i  /  2 )  ·  ( ( 2  /  i )  /  ( 1  +  ( 𝑥 ↑ 2 ) ) ) ) ) ) | 
						
							| 225 | 204 214 224 | 3eqtr4d | ⊢ ( ⊤  →  ( ℂ  D  ( arctan  ↾  𝑆 ) )  =  ( 𝑥  ∈  𝑆  ↦  ( 1  /  ( 1  +  ( 𝑥 ↑ 2 ) ) ) ) ) | 
						
							| 226 | 225 | mptru | ⊢ ( ℂ  D  ( arctan  ↾  𝑆 ) )  =  ( 𝑥  ∈  𝑆  ↦  ( 1  /  ( 1  +  ( 𝑥 ↑ 2 ) ) ) ) |