| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvcl.s |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 2 |
|
dvcl.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
| 3 |
|
dvcl.a |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑆 ) |
| 4 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) |
| 5 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 6 |
1 2 3 4 5
|
dvbssntr |
⊢ ( 𝜑 → dom ( 𝑆 D 𝐹 ) ⊆ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ 𝐴 ) ) |
| 7 |
5
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
| 8 |
|
cnex |
⊢ ℂ ∈ V |
| 9 |
|
ssexg |
⊢ ( ( 𝑆 ⊆ ℂ ∧ ℂ ∈ V ) → 𝑆 ∈ V ) |
| 10 |
1 8 9
|
sylancl |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 11 |
|
resttop |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ 𝑆 ∈ V ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Top ) |
| 12 |
7 10 11
|
sylancr |
⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Top ) |
| 13 |
5
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 14 |
|
resttopon |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
| 15 |
13 1 14
|
sylancr |
⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
| 16 |
|
toponuni |
⊢ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) → 𝑆 = ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
| 17 |
15 16
|
syl |
⊢ ( 𝜑 → 𝑆 = ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
| 18 |
3 17
|
sseqtrd |
⊢ ( 𝜑 → 𝐴 ⊆ ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
| 19 |
|
eqid |
⊢ ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) = ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) |
| 20 |
19
|
ntrss2 |
⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Top ∧ 𝐴 ⊆ ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ 𝐴 ) ⊆ 𝐴 ) |
| 21 |
12 18 20
|
syl2anc |
⊢ ( 𝜑 → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ 𝐴 ) ⊆ 𝐴 ) |
| 22 |
6 21
|
sstrd |
⊢ ( 𝜑 → dom ( 𝑆 D 𝐹 ) ⊆ 𝐴 ) |