Step |
Hyp |
Ref |
Expression |
1 |
|
dvcl.s |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
2 |
|
dvcl.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
3 |
|
dvcl.a |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑆 ) |
4 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) |
5 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
6 |
1 2 3 4 5
|
dvbssntr |
⊢ ( 𝜑 → dom ( 𝑆 D 𝐹 ) ⊆ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ 𝐴 ) ) |
7 |
5
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
8 |
|
cnex |
⊢ ℂ ∈ V |
9 |
|
ssexg |
⊢ ( ( 𝑆 ⊆ ℂ ∧ ℂ ∈ V ) → 𝑆 ∈ V ) |
10 |
1 8 9
|
sylancl |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
11 |
|
resttop |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ 𝑆 ∈ V ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Top ) |
12 |
7 10 11
|
sylancr |
⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Top ) |
13 |
5
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
14 |
|
resttopon |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
15 |
13 1 14
|
sylancr |
⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
16 |
|
toponuni |
⊢ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) → 𝑆 = ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
17 |
15 16
|
syl |
⊢ ( 𝜑 → 𝑆 = ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
18 |
3 17
|
sseqtrd |
⊢ ( 𝜑 → 𝐴 ⊆ ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
19 |
|
eqid |
⊢ ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) = ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) |
20 |
19
|
ntrss2 |
⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Top ∧ 𝐴 ⊆ ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ 𝐴 ) ⊆ 𝐴 ) |
21 |
12 18 20
|
syl2anc |
⊢ ( 𝜑 → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ 𝐴 ) ⊆ 𝐴 ) |
22 |
6 21
|
sstrd |
⊢ ( 𝜑 → dom ( 𝑆 D 𝐹 ) ⊆ 𝐴 ) |