Step |
Hyp |
Ref |
Expression |
1 |
|
dvcl.s |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
2 |
|
dvcl.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
3 |
|
dvcl.a |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑆 ) |
4 |
|
dvbssntr.j |
⊢ 𝐽 = ( 𝐾 ↾t 𝑆 ) |
5 |
|
dvbssntr.k |
⊢ 𝐾 = ( TopOpen ‘ ℂfld ) |
6 |
4 5
|
dvfval |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → ( ( 𝑆 D 𝐹 ) = ∪ 𝑥 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ∧ ( 𝑆 D 𝐹 ) ⊆ ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) × ℂ ) ) ) |
7 |
1 2 3 6
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) = ∪ 𝑥 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ∧ ( 𝑆 D 𝐹 ) ⊆ ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) × ℂ ) ) ) |
8 |
|
dmss |
⊢ ( ( 𝑆 D 𝐹 ) ⊆ ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) × ℂ ) → dom ( 𝑆 D 𝐹 ) ⊆ dom ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) × ℂ ) ) |
9 |
7 8
|
simpl2im |
⊢ ( 𝜑 → dom ( 𝑆 D 𝐹 ) ⊆ dom ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) × ℂ ) ) |
10 |
|
dmxpss |
⊢ dom ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) × ℂ ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) |
11 |
9 10
|
sstrdi |
⊢ ( 𝜑 → dom ( 𝑆 D 𝐹 ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) |