Metamath Proof Explorer


Theorem dvbssntr

Description: The set of differentiable points is a subset of the interior of the domain of the function. (Contributed by Mario Carneiro, 7-Aug-2014) (Revised by Mario Carneiro, 9-Feb-2015)

Ref Expression
Hypotheses dvcl.s ( 𝜑𝑆 ⊆ ℂ )
dvcl.f ( 𝜑𝐹 : 𝐴 ⟶ ℂ )
dvcl.a ( 𝜑𝐴𝑆 )
dvbssntr.j 𝐽 = ( 𝐾t 𝑆 )
dvbssntr.k 𝐾 = ( TopOpen ‘ ℂfld )
Assertion dvbssntr ( 𝜑 → dom ( 𝑆 D 𝐹 ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 dvcl.s ( 𝜑𝑆 ⊆ ℂ )
2 dvcl.f ( 𝜑𝐹 : 𝐴 ⟶ ℂ )
3 dvcl.a ( 𝜑𝐴𝑆 )
4 dvbssntr.j 𝐽 = ( 𝐾t 𝑆 )
5 dvbssntr.k 𝐾 = ( TopOpen ‘ ℂfld )
6 4 5 dvfval ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴𝑆 ) → ( ( 𝑆 D 𝐹 ) = 𝑥 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹𝑧 ) − ( 𝐹𝑥 ) ) / ( 𝑧𝑥 ) ) ) lim 𝑥 ) ) ∧ ( 𝑆 D 𝐹 ) ⊆ ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) × ℂ ) ) )
7 1 2 3 6 syl3anc ( 𝜑 → ( ( 𝑆 D 𝐹 ) = 𝑥 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹𝑧 ) − ( 𝐹𝑥 ) ) / ( 𝑧𝑥 ) ) ) lim 𝑥 ) ) ∧ ( 𝑆 D 𝐹 ) ⊆ ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) × ℂ ) ) )
8 dmss ( ( 𝑆 D 𝐹 ) ⊆ ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) × ℂ ) → dom ( 𝑆 D 𝐹 ) ⊆ dom ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) × ℂ ) )
9 7 8 simpl2im ( 𝜑 → dom ( 𝑆 D 𝐹 ) ⊆ dom ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) × ℂ ) )
10 dmxpss dom ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) × ℂ ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝐴 )
11 9 10 sstrdi ( 𝜑 → dom ( 𝑆 D 𝐹 ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) )