Step |
Hyp |
Ref |
Expression |
1 |
|
df-dv |
⊢ D = ( 𝑠 ∈ 𝒫 ℂ , 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ↦ ∪ 𝑥 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ) |
2 |
1
|
reldmmpo |
⊢ Rel dom D |
3 |
|
df-rel |
⊢ ( Rel dom D ↔ dom D ⊆ ( V × V ) ) |
4 |
2 3
|
mpbi |
⊢ dom D ⊆ ( V × V ) |
5 |
4
|
sseli |
⊢ ( 〈 𝑆 , 𝐹 〉 ∈ dom D → 〈 𝑆 , 𝐹 〉 ∈ ( V × V ) ) |
6 |
|
opelxp1 |
⊢ ( 〈 𝑆 , 𝐹 〉 ∈ ( V × V ) → 𝑆 ∈ V ) |
7 |
5 6
|
syl |
⊢ ( 〈 𝑆 , 𝐹 〉 ∈ dom D → 𝑆 ∈ V ) |
8 |
|
opeq1 |
⊢ ( 𝑠 = 𝑆 → 〈 𝑠 , 𝐹 〉 = 〈 𝑆 , 𝐹 〉 ) |
9 |
8
|
eleq1d |
⊢ ( 𝑠 = 𝑆 → ( 〈 𝑠 , 𝐹 〉 ∈ dom D ↔ 〈 𝑆 , 𝐹 〉 ∈ dom D ) ) |
10 |
|
eleq1 |
⊢ ( 𝑠 = 𝑆 → ( 𝑠 ∈ 𝒫 ℂ ↔ 𝑆 ∈ 𝒫 ℂ ) ) |
11 |
|
oveq2 |
⊢ ( 𝑠 = 𝑆 → ( ℂ ↑pm 𝑠 ) = ( ℂ ↑pm 𝑆 ) ) |
12 |
11
|
eleq2d |
⊢ ( 𝑠 = 𝑆 → ( 𝐹 ∈ ( ℂ ↑pm 𝑠 ) ↔ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ) |
13 |
10 12
|
anbi12d |
⊢ ( 𝑠 = 𝑆 → ( ( 𝑠 ∈ 𝒫 ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑠 ) ) ↔ ( 𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ) ) |
14 |
9 13
|
imbi12d |
⊢ ( 𝑠 = 𝑆 → ( ( 〈 𝑠 , 𝐹 〉 ∈ dom D → ( 𝑠 ∈ 𝒫 ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑠 ) ) ) ↔ ( 〈 𝑆 , 𝐹 〉 ∈ dom D → ( 𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ) ) ) |
15 |
1
|
dmmpossx |
⊢ dom D ⊆ ∪ 𝑠 ∈ 𝒫 ℂ ( { 𝑠 } × ( ℂ ↑pm 𝑠 ) ) |
16 |
15
|
sseli |
⊢ ( 〈 𝑠 , 𝐹 〉 ∈ dom D → 〈 𝑠 , 𝐹 〉 ∈ ∪ 𝑠 ∈ 𝒫 ℂ ( { 𝑠 } × ( ℂ ↑pm 𝑠 ) ) ) |
17 |
|
opeliunxp |
⊢ ( 〈 𝑠 , 𝐹 〉 ∈ ∪ 𝑠 ∈ 𝒫 ℂ ( { 𝑠 } × ( ℂ ↑pm 𝑠 ) ) ↔ ( 𝑠 ∈ 𝒫 ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑠 ) ) ) |
18 |
16 17
|
sylib |
⊢ ( 〈 𝑠 , 𝐹 〉 ∈ dom D → ( 𝑠 ∈ 𝒫 ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑠 ) ) ) |
19 |
14 18
|
vtoclg |
⊢ ( 𝑆 ∈ V → ( 〈 𝑆 , 𝐹 〉 ∈ dom D → ( 𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ) ) |
20 |
7 19
|
mpcom |
⊢ ( 〈 𝑆 , 𝐹 〉 ∈ dom D → ( 𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ) |
21 |
20
|
simpld |
⊢ ( 〈 𝑆 , 𝐹 〉 ∈ dom D → 𝑆 ∈ 𝒫 ℂ ) |
22 |
21
|
elpwid |
⊢ ( 〈 𝑆 , 𝐹 〉 ∈ dom D → 𝑆 ⊆ ℂ ) |
23 |
20
|
simprd |
⊢ ( 〈 𝑆 , 𝐹 〉 ∈ dom D → 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) |
24 |
|
cnex |
⊢ ℂ ∈ V |
25 |
|
elpm2g |
⊢ ( ( ℂ ∈ V ∧ 𝑆 ∈ 𝒫 ℂ ) → ( 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ↔ ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ 𝑆 ) ) ) |
26 |
24 21 25
|
sylancr |
⊢ ( 〈 𝑆 , 𝐹 〉 ∈ dom D → ( 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ↔ ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ 𝑆 ) ) ) |
27 |
23 26
|
mpbid |
⊢ ( 〈 𝑆 , 𝐹 〉 ∈ dom D → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ 𝑆 ) ) |
28 |
27
|
simpld |
⊢ ( 〈 𝑆 , 𝐹 〉 ∈ dom D → 𝐹 : dom 𝐹 ⟶ ℂ ) |
29 |
27
|
simprd |
⊢ ( 〈 𝑆 , 𝐹 〉 ∈ dom D → dom 𝐹 ⊆ 𝑆 ) |
30 |
22 28 29
|
dvbss |
⊢ ( 〈 𝑆 , 𝐹 〉 ∈ dom D → dom ( 𝑆 D 𝐹 ) ⊆ dom 𝐹 ) |
31 |
30 29
|
sstrd |
⊢ ( 〈 𝑆 , 𝐹 〉 ∈ dom D → dom ( 𝑆 D 𝐹 ) ⊆ 𝑆 ) |
32 |
|
df-ov |
⊢ ( 𝑆 D 𝐹 ) = ( D ‘ 〈 𝑆 , 𝐹 〉 ) |
33 |
|
ndmfv |
⊢ ( ¬ 〈 𝑆 , 𝐹 〉 ∈ dom D → ( D ‘ 〈 𝑆 , 𝐹 〉 ) = ∅ ) |
34 |
32 33
|
syl5eq |
⊢ ( ¬ 〈 𝑆 , 𝐹 〉 ∈ dom D → ( 𝑆 D 𝐹 ) = ∅ ) |
35 |
34
|
dmeqd |
⊢ ( ¬ 〈 𝑆 , 𝐹 〉 ∈ dom D → dom ( 𝑆 D 𝐹 ) = dom ∅ ) |
36 |
|
dm0 |
⊢ dom ∅ = ∅ |
37 |
35 36
|
eqtrdi |
⊢ ( ¬ 〈 𝑆 , 𝐹 〉 ∈ dom D → dom ( 𝑆 D 𝐹 ) = ∅ ) |
38 |
|
0ss |
⊢ ∅ ⊆ 𝑆 |
39 |
37 38
|
eqsstrdi |
⊢ ( ¬ 〈 𝑆 , 𝐹 〉 ∈ dom D → dom ( 𝑆 D 𝐹 ) ⊆ 𝑆 ) |
40 |
31 39
|
pm2.61i |
⊢ dom ( 𝑆 D 𝐹 ) ⊆ 𝑆 |