Metamath Proof Explorer


Theorem dvbsss

Description: The set of differentiable points is a subset of the ambient topology. (Contributed by Mario Carneiro, 18-Mar-2015)

Ref Expression
Assertion dvbsss dom ( 𝑆 D 𝐹 ) ⊆ 𝑆

Proof

Step Hyp Ref Expression
1 df-dv D = ( 𝑠 ∈ 𝒫 ℂ , 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ↦ 𝑥 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓𝑧 ) − ( 𝑓𝑥 ) ) / ( 𝑧𝑥 ) ) ) lim 𝑥 ) ) )
2 1 reldmmpo Rel dom D
3 df-rel ( Rel dom D ↔ dom D ⊆ ( V × V ) )
4 2 3 mpbi dom D ⊆ ( V × V )
5 4 sseli ( ⟨ 𝑆 , 𝐹 ⟩ ∈ dom D → ⟨ 𝑆 , 𝐹 ⟩ ∈ ( V × V ) )
6 opelxp1 ( ⟨ 𝑆 , 𝐹 ⟩ ∈ ( V × V ) → 𝑆 ∈ V )
7 5 6 syl ( ⟨ 𝑆 , 𝐹 ⟩ ∈ dom D → 𝑆 ∈ V )
8 opeq1 ( 𝑠 = 𝑆 → ⟨ 𝑠 , 𝐹 ⟩ = ⟨ 𝑆 , 𝐹 ⟩ )
9 8 eleq1d ( 𝑠 = 𝑆 → ( ⟨ 𝑠 , 𝐹 ⟩ ∈ dom D ↔ ⟨ 𝑆 , 𝐹 ⟩ ∈ dom D ) )
10 eleq1 ( 𝑠 = 𝑆 → ( 𝑠 ∈ 𝒫 ℂ ↔ 𝑆 ∈ 𝒫 ℂ ) )
11 oveq2 ( 𝑠 = 𝑆 → ( ℂ ↑pm 𝑠 ) = ( ℂ ↑pm 𝑆 ) )
12 11 eleq2d ( 𝑠 = 𝑆 → ( 𝐹 ∈ ( ℂ ↑pm 𝑠 ) ↔ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) )
13 10 12 anbi12d ( 𝑠 = 𝑆 → ( ( 𝑠 ∈ 𝒫 ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑠 ) ) ↔ ( 𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ) )
14 9 13 imbi12d ( 𝑠 = 𝑆 → ( ( ⟨ 𝑠 , 𝐹 ⟩ ∈ dom D → ( 𝑠 ∈ 𝒫 ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑠 ) ) ) ↔ ( ⟨ 𝑆 , 𝐹 ⟩ ∈ dom D → ( 𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ) ) )
15 1 dmmpossx dom D ⊆ 𝑠 ∈ 𝒫 ℂ ( { 𝑠 } × ( ℂ ↑pm 𝑠 ) )
16 15 sseli ( ⟨ 𝑠 , 𝐹 ⟩ ∈ dom D → ⟨ 𝑠 , 𝐹 ⟩ ∈ 𝑠 ∈ 𝒫 ℂ ( { 𝑠 } × ( ℂ ↑pm 𝑠 ) ) )
17 opeliunxp ( ⟨ 𝑠 , 𝐹 ⟩ ∈ 𝑠 ∈ 𝒫 ℂ ( { 𝑠 } × ( ℂ ↑pm 𝑠 ) ) ↔ ( 𝑠 ∈ 𝒫 ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑠 ) ) )
18 16 17 sylib ( ⟨ 𝑠 , 𝐹 ⟩ ∈ dom D → ( 𝑠 ∈ 𝒫 ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑠 ) ) )
19 14 18 vtoclg ( 𝑆 ∈ V → ( ⟨ 𝑆 , 𝐹 ⟩ ∈ dom D → ( 𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ) )
20 7 19 mpcom ( ⟨ 𝑆 , 𝐹 ⟩ ∈ dom D → ( 𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) )
21 20 simpld ( ⟨ 𝑆 , 𝐹 ⟩ ∈ dom D → 𝑆 ∈ 𝒫 ℂ )
22 21 elpwid ( ⟨ 𝑆 , 𝐹 ⟩ ∈ dom D → 𝑆 ⊆ ℂ )
23 20 simprd ( ⟨ 𝑆 , 𝐹 ⟩ ∈ dom D → 𝐹 ∈ ( ℂ ↑pm 𝑆 ) )
24 cnex ℂ ∈ V
25 elpm2g ( ( ℂ ∈ V ∧ 𝑆 ∈ 𝒫 ℂ ) → ( 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ↔ ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹𝑆 ) ) )
26 24 21 25 sylancr ( ⟨ 𝑆 , 𝐹 ⟩ ∈ dom D → ( 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ↔ ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹𝑆 ) ) )
27 23 26 mpbid ( ⟨ 𝑆 , 𝐹 ⟩ ∈ dom D → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹𝑆 ) )
28 27 simpld ( ⟨ 𝑆 , 𝐹 ⟩ ∈ dom D → 𝐹 : dom 𝐹 ⟶ ℂ )
29 27 simprd ( ⟨ 𝑆 , 𝐹 ⟩ ∈ dom D → dom 𝐹𝑆 )
30 22 28 29 dvbss ( ⟨ 𝑆 , 𝐹 ⟩ ∈ dom D → dom ( 𝑆 D 𝐹 ) ⊆ dom 𝐹 )
31 30 29 sstrd ( ⟨ 𝑆 , 𝐹 ⟩ ∈ dom D → dom ( 𝑆 D 𝐹 ) ⊆ 𝑆 )
32 df-ov ( 𝑆 D 𝐹 ) = ( D ‘ ⟨ 𝑆 , 𝐹 ⟩ )
33 ndmfv ( ¬ ⟨ 𝑆 , 𝐹 ⟩ ∈ dom D → ( D ‘ ⟨ 𝑆 , 𝐹 ⟩ ) = ∅ )
34 32 33 eqtrid ( ¬ ⟨ 𝑆 , 𝐹 ⟩ ∈ dom D → ( 𝑆 D 𝐹 ) = ∅ )
35 34 dmeqd ( ¬ ⟨ 𝑆 , 𝐹 ⟩ ∈ dom D → dom ( 𝑆 D 𝐹 ) = dom ∅ )
36 dm0 dom ∅ = ∅
37 35 36 eqtrdi ( ¬ ⟨ 𝑆 , 𝐹 ⟩ ∈ dom D → dom ( 𝑆 D 𝐹 ) = ∅ )
38 0ss ∅ ⊆ 𝑆
39 37 38 eqsstrdi ( ¬ ⟨ 𝑆 , 𝐹 ⟩ ∈ dom D → dom ( 𝑆 D 𝐹 ) ⊆ 𝑆 )
40 31 39 pm2.61i dom ( 𝑆 D 𝐹 ) ⊆ 𝑆