Step |
Hyp |
Ref |
Expression |
1 |
|
dvf |
⊢ ( ℝ D ( ∗ ∘ 𝐹 ) ) : dom ( ℝ D ( ∗ ∘ 𝐹 ) ) ⟶ ℂ |
2 |
|
ffun |
⊢ ( ( ℝ D ( ∗ ∘ 𝐹 ) ) : dom ( ℝ D ( ∗ ∘ 𝐹 ) ) ⟶ ℂ → Fun ( ℝ D ( ∗ ∘ 𝐹 ) ) ) |
3 |
1 2
|
ax-mp |
⊢ Fun ( ℝ D ( ∗ ∘ 𝐹 ) ) |
4 |
|
simpll |
⊢ ( ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) ∧ 𝑥 ∈ dom ( ℝ D 𝐹 ) ) → 𝐹 : 𝑋 ⟶ ℂ ) |
5 |
|
simplr |
⊢ ( ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) ∧ 𝑥 ∈ dom ( ℝ D 𝐹 ) ) → 𝑋 ⊆ ℝ ) |
6 |
|
simpr |
⊢ ( ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) ∧ 𝑥 ∈ dom ( ℝ D 𝐹 ) ) → 𝑥 ∈ dom ( ℝ D 𝐹 ) ) |
7 |
4 5 6
|
dvcjbr |
⊢ ( ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) ∧ 𝑥 ∈ dom ( ℝ D 𝐹 ) ) → 𝑥 ( ℝ D ( ∗ ∘ 𝐹 ) ) ( ∗ ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
8 |
|
funbrfv |
⊢ ( Fun ( ℝ D ( ∗ ∘ 𝐹 ) ) → ( 𝑥 ( ℝ D ( ∗ ∘ 𝐹 ) ) ( ∗ ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) → ( ( ℝ D ( ∗ ∘ 𝐹 ) ) ‘ 𝑥 ) = ( ∗ ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) ) |
9 |
3 7 8
|
mpsyl |
⊢ ( ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) ∧ 𝑥 ∈ dom ( ℝ D 𝐹 ) ) → ( ( ℝ D ( ∗ ∘ 𝐹 ) ) ‘ 𝑥 ) = ( ∗ ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
10 |
9
|
mpteq2dva |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ( 𝑥 ∈ dom ( ℝ D 𝐹 ) ↦ ( ( ℝ D ( ∗ ∘ 𝐹 ) ) ‘ 𝑥 ) ) = ( 𝑥 ∈ dom ( ℝ D 𝐹 ) ↦ ( ∗ ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) ) |
11 |
|
cjf |
⊢ ∗ : ℂ ⟶ ℂ |
12 |
|
fco |
⊢ ( ( ∗ : ℂ ⟶ ℂ ∧ 𝐹 : 𝑋 ⟶ ℂ ) → ( ∗ ∘ 𝐹 ) : 𝑋 ⟶ ℂ ) |
13 |
11 12
|
mpan |
⊢ ( 𝐹 : 𝑋 ⟶ ℂ → ( ∗ ∘ 𝐹 ) : 𝑋 ⟶ ℂ ) |
14 |
13
|
ad2antrr |
⊢ ( ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) ∧ 𝑥 ∈ dom ( ℝ D ( ∗ ∘ 𝐹 ) ) ) → ( ∗ ∘ 𝐹 ) : 𝑋 ⟶ ℂ ) |
15 |
|
simplr |
⊢ ( ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) ∧ 𝑥 ∈ dom ( ℝ D ( ∗ ∘ 𝐹 ) ) ) → 𝑋 ⊆ ℝ ) |
16 |
|
simpr |
⊢ ( ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) ∧ 𝑥 ∈ dom ( ℝ D ( ∗ ∘ 𝐹 ) ) ) → 𝑥 ∈ dom ( ℝ D ( ∗ ∘ 𝐹 ) ) ) |
17 |
14 15 16
|
dvcjbr |
⊢ ( ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) ∧ 𝑥 ∈ dom ( ℝ D ( ∗ ∘ 𝐹 ) ) ) → 𝑥 ( ℝ D ( ∗ ∘ ( ∗ ∘ 𝐹 ) ) ) ( ∗ ‘ ( ( ℝ D ( ∗ ∘ 𝐹 ) ) ‘ 𝑥 ) ) ) |
18 |
|
vex |
⊢ 𝑥 ∈ V |
19 |
|
fvex |
⊢ ( ∗ ‘ ( ( ℝ D ( ∗ ∘ 𝐹 ) ) ‘ 𝑥 ) ) ∈ V |
20 |
18 19
|
breldm |
⊢ ( 𝑥 ( ℝ D ( ∗ ∘ ( ∗ ∘ 𝐹 ) ) ) ( ∗ ‘ ( ( ℝ D ( ∗ ∘ 𝐹 ) ) ‘ 𝑥 ) ) → 𝑥 ∈ dom ( ℝ D ( ∗ ∘ ( ∗ ∘ 𝐹 ) ) ) ) |
21 |
17 20
|
syl |
⊢ ( ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) ∧ 𝑥 ∈ dom ( ℝ D ( ∗ ∘ 𝐹 ) ) ) → 𝑥 ∈ dom ( ℝ D ( ∗ ∘ ( ∗ ∘ 𝐹 ) ) ) ) |
22 |
21
|
ex |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ( 𝑥 ∈ dom ( ℝ D ( ∗ ∘ 𝐹 ) ) → 𝑥 ∈ dom ( ℝ D ( ∗ ∘ ( ∗ ∘ 𝐹 ) ) ) ) ) |
23 |
22
|
ssrdv |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → dom ( ℝ D ( ∗ ∘ 𝐹 ) ) ⊆ dom ( ℝ D ( ∗ ∘ ( ∗ ∘ 𝐹 ) ) ) ) |
24 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
25 |
24
|
adantlr |
⊢ ( ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
26 |
25
|
cjcjd |
⊢ ( ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) ∧ 𝑥 ∈ 𝑋 ) → ( ∗ ‘ ( ∗ ‘ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) |
27 |
26
|
mpteq2dva |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ( 𝑥 ∈ 𝑋 ↦ ( ∗ ‘ ( ∗ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
28 |
25
|
cjcld |
⊢ ( ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) ∧ 𝑥 ∈ 𝑋 ) → ( ∗ ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℂ ) |
29 |
|
simpl |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → 𝐹 : 𝑋 ⟶ ℂ ) |
30 |
29
|
feqmptd |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
31 |
11
|
a1i |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ∗ : ℂ ⟶ ℂ ) |
32 |
31
|
feqmptd |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ∗ = ( 𝑦 ∈ ℂ ↦ ( ∗ ‘ 𝑦 ) ) ) |
33 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( ∗ ‘ 𝑦 ) = ( ∗ ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
34 |
25 30 32 33
|
fmptco |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ( ∗ ∘ 𝐹 ) = ( 𝑥 ∈ 𝑋 ↦ ( ∗ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
35 |
|
fveq2 |
⊢ ( 𝑦 = ( ∗ ‘ ( 𝐹 ‘ 𝑥 ) ) → ( ∗ ‘ 𝑦 ) = ( ∗ ‘ ( ∗ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
36 |
28 34 32 35
|
fmptco |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ( ∗ ∘ ( ∗ ∘ 𝐹 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ∗ ‘ ( ∗ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
37 |
27 36 30
|
3eqtr4d |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ( ∗ ∘ ( ∗ ∘ 𝐹 ) ) = 𝐹 ) |
38 |
37
|
oveq2d |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ( ℝ D ( ∗ ∘ ( ∗ ∘ 𝐹 ) ) ) = ( ℝ D 𝐹 ) ) |
39 |
38
|
dmeqd |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → dom ( ℝ D ( ∗ ∘ ( ∗ ∘ 𝐹 ) ) ) = dom ( ℝ D 𝐹 ) ) |
40 |
23 39
|
sseqtrd |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → dom ( ℝ D ( ∗ ∘ 𝐹 ) ) ⊆ dom ( ℝ D 𝐹 ) ) |
41 |
|
fvex |
⊢ ( ∗ ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ∈ V |
42 |
18 41
|
breldm |
⊢ ( 𝑥 ( ℝ D ( ∗ ∘ 𝐹 ) ) ( ∗ ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) → 𝑥 ∈ dom ( ℝ D ( ∗ ∘ 𝐹 ) ) ) |
43 |
7 42
|
syl |
⊢ ( ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) ∧ 𝑥 ∈ dom ( ℝ D 𝐹 ) ) → 𝑥 ∈ dom ( ℝ D ( ∗ ∘ 𝐹 ) ) ) |
44 |
40 43
|
eqelssd |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → dom ( ℝ D ( ∗ ∘ 𝐹 ) ) = dom ( ℝ D 𝐹 ) ) |
45 |
44
|
feq2d |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ( ( ℝ D ( ∗ ∘ 𝐹 ) ) : dom ( ℝ D ( ∗ ∘ 𝐹 ) ) ⟶ ℂ ↔ ( ℝ D ( ∗ ∘ 𝐹 ) ) : dom ( ℝ D 𝐹 ) ⟶ ℂ ) ) |
46 |
1 45
|
mpbii |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ( ℝ D ( ∗ ∘ 𝐹 ) ) : dom ( ℝ D 𝐹 ) ⟶ ℂ ) |
47 |
46
|
feqmptd |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ( ℝ D ( ∗ ∘ 𝐹 ) ) = ( 𝑥 ∈ dom ( ℝ D 𝐹 ) ↦ ( ( ℝ D ( ∗ ∘ 𝐹 ) ) ‘ 𝑥 ) ) ) |
48 |
|
dvf |
⊢ ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℂ |
49 |
48
|
ffvelrni |
⊢ ( 𝑥 ∈ dom ( ℝ D 𝐹 ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℂ ) |
50 |
49
|
adantl |
⊢ ( ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) ∧ 𝑥 ∈ dom ( ℝ D 𝐹 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℂ ) |
51 |
48
|
a1i |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℂ ) |
52 |
51
|
feqmptd |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ( ℝ D 𝐹 ) = ( 𝑥 ∈ dom ( ℝ D 𝐹 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
53 |
|
fveq2 |
⊢ ( 𝑦 = ( ( ℝ D 𝐹 ) ‘ 𝑥 ) → ( ∗ ‘ 𝑦 ) = ( ∗ ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
54 |
50 52 32 53
|
fmptco |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ( ∗ ∘ ( ℝ D 𝐹 ) ) = ( 𝑥 ∈ dom ( ℝ D 𝐹 ) ↦ ( ∗ ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) ) |
55 |
10 47 54
|
3eqtr4d |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ( ℝ D ( ∗ ∘ 𝐹 ) ) = ( ∗ ∘ ( ℝ D 𝐹 ) ) ) |