Step |
Hyp |
Ref |
Expression |
1 |
|
dvcj.f |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) |
2 |
|
dvcj.x |
⊢ ( 𝜑 → 𝑋 ⊆ ℝ ) |
3 |
|
dvcj.c |
⊢ ( 𝜑 → 𝐶 ∈ dom ( ℝ D 𝐹 ) ) |
4 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
5 |
4
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
6 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
7 |
6
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
8 |
5 1 2 7 6
|
dvbssntr |
⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) ⊆ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝑋 ) ) |
9 |
8 3
|
sseldd |
⊢ ( 𝜑 → 𝐶 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝑋 ) ) |
10 |
2 4
|
sstrdi |
⊢ ( 𝜑 → 𝑋 ⊆ ℂ ) |
11 |
4
|
a1i |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ℝ ⊆ ℂ ) |
12 |
|
simpl |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → 𝐹 : 𝑋 ⟶ ℂ ) |
13 |
|
simpr |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → 𝑋 ⊆ ℝ ) |
14 |
11 12 13
|
dvbss |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → dom ( ℝ D 𝐹 ) ⊆ 𝑋 ) |
15 |
1 2 14
|
syl2anc |
⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) ⊆ 𝑋 ) |
16 |
15 3
|
sseldd |
⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) |
17 |
1 10 16
|
dvlem |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑥 − 𝐶 ) ) ∈ ℂ ) |
18 |
17
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑥 − 𝐶 ) ) ) : ( 𝑋 ∖ { 𝐶 } ) ⟶ ℂ ) |
19 |
|
ssidd |
⊢ ( 𝜑 → ℂ ⊆ ℂ ) |
20 |
6
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
21 |
20
|
toponrestid |
⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
22 |
|
dvf |
⊢ ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℂ |
23 |
|
ffun |
⊢ ( ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℂ → Fun ( ℝ D 𝐹 ) ) |
24 |
|
funfvbrb |
⊢ ( Fun ( ℝ D 𝐹 ) → ( 𝐶 ∈ dom ( ℝ D 𝐹 ) ↔ 𝐶 ( ℝ D 𝐹 ) ( ( ℝ D 𝐹 ) ‘ 𝐶 ) ) ) |
25 |
22 23 24
|
mp2b |
⊢ ( 𝐶 ∈ dom ( ℝ D 𝐹 ) ↔ 𝐶 ( ℝ D 𝐹 ) ( ( ℝ D 𝐹 ) ‘ 𝐶 ) ) |
26 |
3 25
|
sylib |
⊢ ( 𝜑 → 𝐶 ( ℝ D 𝐹 ) ( ( ℝ D 𝐹 ) ‘ 𝐶 ) ) |
27 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑥 − 𝐶 ) ) ) = ( 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑥 − 𝐶 ) ) ) |
28 |
7 6 27 5 1 2
|
eldv |
⊢ ( 𝜑 → ( 𝐶 ( ℝ D 𝐹 ) ( ( ℝ D 𝐹 ) ‘ 𝐶 ) ↔ ( 𝐶 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝑋 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝐶 ) ∈ ( ( 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑥 − 𝐶 ) ) ) limℂ 𝐶 ) ) ) ) |
29 |
26 28
|
mpbid |
⊢ ( 𝜑 → ( 𝐶 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝑋 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝐶 ) ∈ ( ( 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑥 − 𝐶 ) ) ) limℂ 𝐶 ) ) ) |
30 |
29
|
simprd |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ‘ 𝐶 ) ∈ ( ( 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑥 − 𝐶 ) ) ) limℂ 𝐶 ) ) |
31 |
|
cjcncf |
⊢ ∗ ∈ ( ℂ –cn→ ℂ ) |
32 |
6
|
cncfcn1 |
⊢ ( ℂ –cn→ ℂ ) = ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) |
33 |
31 32
|
eleqtri |
⊢ ∗ ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) |
34 |
22
|
ffvelrni |
⊢ ( 𝐶 ∈ dom ( ℝ D 𝐹 ) → ( ( ℝ D 𝐹 ) ‘ 𝐶 ) ∈ ℂ ) |
35 |
3 34
|
syl |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ‘ 𝐶 ) ∈ ℂ ) |
36 |
|
unicntop |
⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) |
37 |
36
|
cncnpi |
⊢ ( ( ∗ ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝐶 ) ∈ ℂ ) → ∗ ∈ ( ( ( TopOpen ‘ ℂfld ) CnP ( TopOpen ‘ ℂfld ) ) ‘ ( ( ℝ D 𝐹 ) ‘ 𝐶 ) ) ) |
38 |
33 35 37
|
sylancr |
⊢ ( 𝜑 → ∗ ∈ ( ( ( TopOpen ‘ ℂfld ) CnP ( TopOpen ‘ ℂfld ) ) ‘ ( ( ℝ D 𝐹 ) ‘ 𝐶 ) ) ) |
39 |
18 19 6 21 30 38
|
limccnp |
⊢ ( 𝜑 → ( ∗ ‘ ( ( ℝ D 𝐹 ) ‘ 𝐶 ) ) ∈ ( ( ∗ ∘ ( 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑥 − 𝐶 ) ) ) ) limℂ 𝐶 ) ) |
40 |
|
cjf |
⊢ ∗ : ℂ ⟶ ℂ |
41 |
40
|
a1i |
⊢ ( 𝜑 → ∗ : ℂ ⟶ ℂ ) |
42 |
41 17
|
cofmpt |
⊢ ( 𝜑 → ( ∗ ∘ ( 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑥 − 𝐶 ) ) ) ) = ( 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ∗ ‘ ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑥 − 𝐶 ) ) ) ) ) |
43 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → 𝐹 : 𝑋 ⟶ ℂ ) |
44 |
|
eldifi |
⊢ ( 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) → 𝑥 ∈ 𝑋 ) |
45 |
44
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → 𝑥 ∈ 𝑋 ) |
46 |
43 45
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
47 |
1 16
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ ℂ ) |
48 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( 𝐹 ‘ 𝐶 ) ∈ ℂ ) |
49 |
46 48
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝐶 ) ) ∈ ℂ ) |
50 |
2
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ ℝ ) |
51 |
44 50
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → 𝑥 ∈ ℝ ) |
52 |
2 16
|
sseldd |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
53 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → 𝐶 ∈ ℝ ) |
54 |
51 53
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( 𝑥 − 𝐶 ) ∈ ℝ ) |
55 |
54
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( 𝑥 − 𝐶 ) ∈ ℂ ) |
56 |
51
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → 𝑥 ∈ ℂ ) |
57 |
53
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → 𝐶 ∈ ℂ ) |
58 |
|
eldifsni |
⊢ ( 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) → 𝑥 ≠ 𝐶 ) |
59 |
58
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → 𝑥 ≠ 𝐶 ) |
60 |
56 57 59
|
subne0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( 𝑥 − 𝐶 ) ≠ 0 ) |
61 |
49 55 60
|
cjdivd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( ∗ ‘ ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑥 − 𝐶 ) ) ) = ( ( ∗ ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝐶 ) ) ) / ( ∗ ‘ ( 𝑥 − 𝐶 ) ) ) ) |
62 |
|
cjsub |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝐶 ) ∈ ℂ ) → ( ∗ ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝐶 ) ) ) = ( ( ∗ ‘ ( 𝐹 ‘ 𝑥 ) ) − ( ∗ ‘ ( 𝐹 ‘ 𝐶 ) ) ) ) |
63 |
46 48 62
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( ∗ ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝐶 ) ) ) = ( ( ∗ ‘ ( 𝐹 ‘ 𝑥 ) ) − ( ∗ ‘ ( 𝐹 ‘ 𝐶 ) ) ) ) |
64 |
|
fvco3 |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑥 ∈ 𝑋 ) → ( ( ∗ ∘ 𝐹 ) ‘ 𝑥 ) = ( ∗ ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
65 |
1 44 64
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( ( ∗ ∘ 𝐹 ) ‘ 𝑥 ) = ( ∗ ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
66 |
|
fvco3 |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝐶 ∈ 𝑋 ) → ( ( ∗ ∘ 𝐹 ) ‘ 𝐶 ) = ( ∗ ‘ ( 𝐹 ‘ 𝐶 ) ) ) |
67 |
1 16 66
|
syl2anc |
⊢ ( 𝜑 → ( ( ∗ ∘ 𝐹 ) ‘ 𝐶 ) = ( ∗ ‘ ( 𝐹 ‘ 𝐶 ) ) ) |
68 |
67
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( ( ∗ ∘ 𝐹 ) ‘ 𝐶 ) = ( ∗ ‘ ( 𝐹 ‘ 𝐶 ) ) ) |
69 |
65 68
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( ( ( ∗ ∘ 𝐹 ) ‘ 𝑥 ) − ( ( ∗ ∘ 𝐹 ) ‘ 𝐶 ) ) = ( ( ∗ ‘ ( 𝐹 ‘ 𝑥 ) ) − ( ∗ ‘ ( 𝐹 ‘ 𝐶 ) ) ) ) |
70 |
63 69
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( ∗ ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝐶 ) ) ) = ( ( ( ∗ ∘ 𝐹 ) ‘ 𝑥 ) − ( ( ∗ ∘ 𝐹 ) ‘ 𝐶 ) ) ) |
71 |
54
|
cjred |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( ∗ ‘ ( 𝑥 − 𝐶 ) ) = ( 𝑥 − 𝐶 ) ) |
72 |
70 71
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( ( ∗ ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝐶 ) ) ) / ( ∗ ‘ ( 𝑥 − 𝐶 ) ) ) = ( ( ( ( ∗ ∘ 𝐹 ) ‘ 𝑥 ) − ( ( ∗ ∘ 𝐹 ) ‘ 𝐶 ) ) / ( 𝑥 − 𝐶 ) ) ) |
73 |
61 72
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( ∗ ‘ ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑥 − 𝐶 ) ) ) = ( ( ( ( ∗ ∘ 𝐹 ) ‘ 𝑥 ) − ( ( ∗ ∘ 𝐹 ) ‘ 𝐶 ) ) / ( 𝑥 − 𝐶 ) ) ) |
74 |
73
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ∗ ‘ ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑥 − 𝐶 ) ) ) ) = ( 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( ( ∗ ∘ 𝐹 ) ‘ 𝑥 ) − ( ( ∗ ∘ 𝐹 ) ‘ 𝐶 ) ) / ( 𝑥 − 𝐶 ) ) ) ) |
75 |
42 74
|
eqtrd |
⊢ ( 𝜑 → ( ∗ ∘ ( 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑥 − 𝐶 ) ) ) ) = ( 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( ( ∗ ∘ 𝐹 ) ‘ 𝑥 ) − ( ( ∗ ∘ 𝐹 ) ‘ 𝐶 ) ) / ( 𝑥 − 𝐶 ) ) ) ) |
76 |
75
|
oveq1d |
⊢ ( 𝜑 → ( ( ∗ ∘ ( 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑥 − 𝐶 ) ) ) ) limℂ 𝐶 ) = ( ( 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( ( ∗ ∘ 𝐹 ) ‘ 𝑥 ) − ( ( ∗ ∘ 𝐹 ) ‘ 𝐶 ) ) / ( 𝑥 − 𝐶 ) ) ) limℂ 𝐶 ) ) |
77 |
39 76
|
eleqtrd |
⊢ ( 𝜑 → ( ∗ ‘ ( ( ℝ D 𝐹 ) ‘ 𝐶 ) ) ∈ ( ( 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( ( ∗ ∘ 𝐹 ) ‘ 𝑥 ) − ( ( ∗ ∘ 𝐹 ) ‘ 𝐶 ) ) / ( 𝑥 − 𝐶 ) ) ) limℂ 𝐶 ) ) |
78 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( ( ∗ ∘ 𝐹 ) ‘ 𝑥 ) − ( ( ∗ ∘ 𝐹 ) ‘ 𝐶 ) ) / ( 𝑥 − 𝐶 ) ) ) = ( 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( ( ∗ ∘ 𝐹 ) ‘ 𝑥 ) − ( ( ∗ ∘ 𝐹 ) ‘ 𝐶 ) ) / ( 𝑥 − 𝐶 ) ) ) |
79 |
|
fco |
⊢ ( ( ∗ : ℂ ⟶ ℂ ∧ 𝐹 : 𝑋 ⟶ ℂ ) → ( ∗ ∘ 𝐹 ) : 𝑋 ⟶ ℂ ) |
80 |
40 1 79
|
sylancr |
⊢ ( 𝜑 → ( ∗ ∘ 𝐹 ) : 𝑋 ⟶ ℂ ) |
81 |
7 6 78 5 80 2
|
eldv |
⊢ ( 𝜑 → ( 𝐶 ( ℝ D ( ∗ ∘ 𝐹 ) ) ( ∗ ‘ ( ( ℝ D 𝐹 ) ‘ 𝐶 ) ) ↔ ( 𝐶 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝑋 ) ∧ ( ∗ ‘ ( ( ℝ D 𝐹 ) ‘ 𝐶 ) ) ∈ ( ( 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( ( ∗ ∘ 𝐹 ) ‘ 𝑥 ) − ( ( ∗ ∘ 𝐹 ) ‘ 𝐶 ) ) / ( 𝑥 − 𝐶 ) ) ) limℂ 𝐶 ) ) ) ) |
82 |
9 77 81
|
mpbir2and |
⊢ ( 𝜑 → 𝐶 ( ℝ D ( ∗ ∘ 𝐹 ) ) ( ∗ ‘ ( ( ℝ D 𝐹 ) ‘ 𝐶 ) ) ) |