Step |
Hyp |
Ref |
Expression |
1 |
|
dvcl.s |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
2 |
|
dvcl.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
3 |
|
dvcl.a |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑆 ) |
4 |
|
limccl |
⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ) limℂ 𝐵 ) ⊆ ℂ |
5 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) |
6 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
7 |
|
eqid |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ) = ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ) |
8 |
5 6 7 1 2 3
|
eldv |
⊢ ( 𝜑 → ( 𝐵 ( 𝑆 D 𝐹 ) 𝐶 ↔ ( 𝐵 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ 𝐴 ) ∧ 𝐶 ∈ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ) limℂ 𝐵 ) ) ) ) |
9 |
8
|
simplbda |
⊢ ( ( 𝜑 ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝐶 ) → 𝐶 ∈ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ) limℂ 𝐵 ) ) |
10 |
4 9
|
sselid |
⊢ ( ( 𝜑 ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝐶 ) → 𝐶 ∈ ℂ ) |