Step |
Hyp |
Ref |
Expression |
1 |
|
dvcmul.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
2 |
|
dvcmul.f |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) |
3 |
|
dvcmul.a |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
4 |
|
dvcmul.x |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) |
5 |
|
dvcmul.c |
⊢ ( 𝜑 → 𝐶 ∈ dom ( 𝑆 D 𝐹 ) ) |
6 |
|
fconst6g |
⊢ ( 𝐴 ∈ ℂ → ( 𝑆 × { 𝐴 } ) : 𝑆 ⟶ ℂ ) |
7 |
3 6
|
syl |
⊢ ( 𝜑 → ( 𝑆 × { 𝐴 } ) : 𝑆 ⟶ ℂ ) |
8 |
|
ssidd |
⊢ ( 𝜑 → 𝑆 ⊆ 𝑆 ) |
9 |
|
recnprss |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) |
10 |
1 9
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
11 |
10 2 4
|
dvbss |
⊢ ( 𝜑 → dom ( 𝑆 D 𝐹 ) ⊆ 𝑋 ) |
12 |
11 5
|
sseldd |
⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) |
13 |
4 12
|
sseldd |
⊢ ( 𝜑 → 𝐶 ∈ 𝑆 ) |
14 |
|
fconst6g |
⊢ ( 𝐴 ∈ ℂ → ( ℂ × { 𝐴 } ) : ℂ ⟶ ℂ ) |
15 |
3 14
|
syl |
⊢ ( 𝜑 → ( ℂ × { 𝐴 } ) : ℂ ⟶ ℂ ) |
16 |
|
ssidd |
⊢ ( 𝜑 → ℂ ⊆ ℂ ) |
17 |
|
dvconst |
⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( ℂ × { 𝐴 } ) ) = ( ℂ × { 0 } ) ) |
18 |
3 17
|
syl |
⊢ ( 𝜑 → ( ℂ D ( ℂ × { 𝐴 } ) ) = ( ℂ × { 0 } ) ) |
19 |
18
|
dmeqd |
⊢ ( 𝜑 → dom ( ℂ D ( ℂ × { 𝐴 } ) ) = dom ( ℂ × { 0 } ) ) |
20 |
|
c0ex |
⊢ 0 ∈ V |
21 |
20
|
fconst |
⊢ ( ℂ × { 0 } ) : ℂ ⟶ { 0 } |
22 |
21
|
fdmi |
⊢ dom ( ℂ × { 0 } ) = ℂ |
23 |
19 22
|
eqtrdi |
⊢ ( 𝜑 → dom ( ℂ D ( ℂ × { 𝐴 } ) ) = ℂ ) |
24 |
10 23
|
sseqtrrd |
⊢ ( 𝜑 → 𝑆 ⊆ dom ( ℂ D ( ℂ × { 𝐴 } ) ) ) |
25 |
|
dvres3 |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ ( ℂ × { 𝐴 } ) : ℂ ⟶ ℂ ) ∧ ( ℂ ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D ( ℂ × { 𝐴 } ) ) ) ) → ( 𝑆 D ( ( ℂ × { 𝐴 } ) ↾ 𝑆 ) ) = ( ( ℂ D ( ℂ × { 𝐴 } ) ) ↾ 𝑆 ) ) |
26 |
1 15 16 24 25
|
syl22anc |
⊢ ( 𝜑 → ( 𝑆 D ( ( ℂ × { 𝐴 } ) ↾ 𝑆 ) ) = ( ( ℂ D ( ℂ × { 𝐴 } ) ) ↾ 𝑆 ) ) |
27 |
|
xpssres |
⊢ ( 𝑆 ⊆ ℂ → ( ( ℂ × { 𝐴 } ) ↾ 𝑆 ) = ( 𝑆 × { 𝐴 } ) ) |
28 |
10 27
|
syl |
⊢ ( 𝜑 → ( ( ℂ × { 𝐴 } ) ↾ 𝑆 ) = ( 𝑆 × { 𝐴 } ) ) |
29 |
28
|
oveq2d |
⊢ ( 𝜑 → ( 𝑆 D ( ( ℂ × { 𝐴 } ) ↾ 𝑆 ) ) = ( 𝑆 D ( 𝑆 × { 𝐴 } ) ) ) |
30 |
18
|
reseq1d |
⊢ ( 𝜑 → ( ( ℂ D ( ℂ × { 𝐴 } ) ) ↾ 𝑆 ) = ( ( ℂ × { 0 } ) ↾ 𝑆 ) ) |
31 |
|
xpssres |
⊢ ( 𝑆 ⊆ ℂ → ( ( ℂ × { 0 } ) ↾ 𝑆 ) = ( 𝑆 × { 0 } ) ) |
32 |
10 31
|
syl |
⊢ ( 𝜑 → ( ( ℂ × { 0 } ) ↾ 𝑆 ) = ( 𝑆 × { 0 } ) ) |
33 |
30 32
|
eqtrd |
⊢ ( 𝜑 → ( ( ℂ D ( ℂ × { 𝐴 } ) ) ↾ 𝑆 ) = ( 𝑆 × { 0 } ) ) |
34 |
26 29 33
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑆 × { 𝐴 } ) ) = ( 𝑆 × { 0 } ) ) |
35 |
20
|
fconst2 |
⊢ ( ( 𝑆 D ( 𝑆 × { 𝐴 } ) ) : 𝑆 ⟶ { 0 } ↔ ( 𝑆 D ( 𝑆 × { 𝐴 } ) ) = ( 𝑆 × { 0 } ) ) |
36 |
34 35
|
sylibr |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑆 × { 𝐴 } ) ) : 𝑆 ⟶ { 0 } ) |
37 |
36
|
fdmd |
⊢ ( 𝜑 → dom ( 𝑆 D ( 𝑆 × { 𝐴 } ) ) = 𝑆 ) |
38 |
13 37
|
eleqtrrd |
⊢ ( 𝜑 → 𝐶 ∈ dom ( 𝑆 D ( 𝑆 × { 𝐴 } ) ) ) |
39 |
7 8 2 4 1 38 5
|
dvmul |
⊢ ( 𝜑 → ( ( 𝑆 D ( ( 𝑆 × { 𝐴 } ) ∘f · 𝐹 ) ) ‘ 𝐶 ) = ( ( ( ( 𝑆 D ( 𝑆 × { 𝐴 } ) ) ‘ 𝐶 ) · ( 𝐹 ‘ 𝐶 ) ) + ( ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) · ( ( 𝑆 × { 𝐴 } ) ‘ 𝐶 ) ) ) ) |
40 |
34
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑆 D ( 𝑆 × { 𝐴 } ) ) ‘ 𝐶 ) = ( ( 𝑆 × { 0 } ) ‘ 𝐶 ) ) |
41 |
20
|
fvconst2 |
⊢ ( 𝐶 ∈ 𝑆 → ( ( 𝑆 × { 0 } ) ‘ 𝐶 ) = 0 ) |
42 |
13 41
|
syl |
⊢ ( 𝜑 → ( ( 𝑆 × { 0 } ) ‘ 𝐶 ) = 0 ) |
43 |
40 42
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑆 D ( 𝑆 × { 𝐴 } ) ) ‘ 𝐶 ) = 0 ) |
44 |
43
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑆 D ( 𝑆 × { 𝐴 } ) ) ‘ 𝐶 ) · ( 𝐹 ‘ 𝐶 ) ) = ( 0 · ( 𝐹 ‘ 𝐶 ) ) ) |
45 |
2 12
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ ℂ ) |
46 |
45
|
mul02d |
⊢ ( 𝜑 → ( 0 · ( 𝐹 ‘ 𝐶 ) ) = 0 ) |
47 |
44 46
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑆 D ( 𝑆 × { 𝐴 } ) ) ‘ 𝐶 ) · ( 𝐹 ‘ 𝐶 ) ) = 0 ) |
48 |
|
fvconst2g |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ 𝑆 ) → ( ( 𝑆 × { 𝐴 } ) ‘ 𝐶 ) = 𝐴 ) |
49 |
3 13 48
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑆 × { 𝐴 } ) ‘ 𝐶 ) = 𝐴 ) |
50 |
49
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) · ( ( 𝑆 × { 𝐴 } ) ‘ 𝐶 ) ) = ( ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) · 𝐴 ) ) |
51 |
|
dvfg |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) |
52 |
1 51
|
syl |
⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) |
53 |
52 5
|
ffvelrnd |
⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ∈ ℂ ) |
54 |
53 3
|
mulcomd |
⊢ ( 𝜑 → ( ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) · 𝐴 ) = ( 𝐴 · ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ) |
55 |
50 54
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) · ( ( 𝑆 × { 𝐴 } ) ‘ 𝐶 ) ) = ( 𝐴 · ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ) |
56 |
47 55
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ( 𝑆 D ( 𝑆 × { 𝐴 } ) ) ‘ 𝐶 ) · ( 𝐹 ‘ 𝐶 ) ) + ( ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) · ( ( 𝑆 × { 𝐴 } ) ‘ 𝐶 ) ) ) = ( 0 + ( 𝐴 · ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ) ) |
57 |
3 53
|
mulcld |
⊢ ( 𝜑 → ( 𝐴 · ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ∈ ℂ ) |
58 |
57
|
addid2d |
⊢ ( 𝜑 → ( 0 + ( 𝐴 · ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ) = ( 𝐴 · ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ) |
59 |
39 56 58
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑆 D ( ( 𝑆 × { 𝐴 } ) ∘f · 𝐹 ) ) ‘ 𝐶 ) = ( 𝐴 · ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ) |