| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvcmul.s | ⊢ ( 𝜑  →  𝑆  ∈  { ℝ ,  ℂ } ) | 
						
							| 2 |  | dvcmul.f | ⊢ ( 𝜑  →  𝐹 : 𝑋 ⟶ ℂ ) | 
						
							| 3 |  | dvcmul.a | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 4 |  | dvcmulf.df | ⊢ ( 𝜑  →  dom  ( 𝑆  D  𝐹 )  =  𝑋 ) | 
						
							| 5 |  | fconstg | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝑋  ×  { 𝐴 } ) : 𝑋 ⟶ { 𝐴 } ) | 
						
							| 6 | 3 5 | syl | ⊢ ( 𝜑  →  ( 𝑋  ×  { 𝐴 } ) : 𝑋 ⟶ { 𝐴 } ) | 
						
							| 7 | 3 | snssd | ⊢ ( 𝜑  →  { 𝐴 }  ⊆  ℂ ) | 
						
							| 8 | 6 7 | fssd | ⊢ ( 𝜑  →  ( 𝑋  ×  { 𝐴 } ) : 𝑋 ⟶ ℂ ) | 
						
							| 9 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 10 | 9 | fconst | ⊢ ( 𝑋  ×  { 0 } ) : 𝑋 ⟶ { 0 } | 
						
							| 11 |  | recnprss | ⊢ ( 𝑆  ∈  { ℝ ,  ℂ }  →  𝑆  ⊆  ℂ ) | 
						
							| 12 | 1 11 | syl | ⊢ ( 𝜑  →  𝑆  ⊆  ℂ ) | 
						
							| 13 |  | fconstg | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝑆  ×  { 𝐴 } ) : 𝑆 ⟶ { 𝐴 } ) | 
						
							| 14 | 3 13 | syl | ⊢ ( 𝜑  →  ( 𝑆  ×  { 𝐴 } ) : 𝑆 ⟶ { 𝐴 } ) | 
						
							| 15 | 14 7 | fssd | ⊢ ( 𝜑  →  ( 𝑆  ×  { 𝐴 } ) : 𝑆 ⟶ ℂ ) | 
						
							| 16 |  | ssidd | ⊢ ( 𝜑  →  𝑆  ⊆  𝑆 ) | 
						
							| 17 |  | dvbsss | ⊢ dom  ( 𝑆  D  𝐹 )  ⊆  𝑆 | 
						
							| 18 | 17 | a1i | ⊢ ( 𝜑  →  dom  ( 𝑆  D  𝐹 )  ⊆  𝑆 ) | 
						
							| 19 | 4 18 | eqsstrrd | ⊢ ( 𝜑  →  𝑋  ⊆  𝑆 ) | 
						
							| 20 |  | eqid | ⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 21 |  | eqid | ⊢ ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 )  =  ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 ) | 
						
							| 22 | 20 21 | dvres | ⊢ ( ( ( 𝑆  ⊆  ℂ  ∧  ( 𝑆  ×  { 𝐴 } ) : 𝑆 ⟶ ℂ )  ∧  ( 𝑆  ⊆  𝑆  ∧  𝑋  ⊆  𝑆 ) )  →  ( 𝑆  D  ( ( 𝑆  ×  { 𝐴 } )  ↾  𝑋 ) )  =  ( ( 𝑆  D  ( 𝑆  ×  { 𝐴 } ) )  ↾  ( ( int ‘ ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 ) ) ‘ 𝑋 ) ) ) | 
						
							| 23 | 12 15 16 19 22 | syl22anc | ⊢ ( 𝜑  →  ( 𝑆  D  ( ( 𝑆  ×  { 𝐴 } )  ↾  𝑋 ) )  =  ( ( 𝑆  D  ( 𝑆  ×  { 𝐴 } ) )  ↾  ( ( int ‘ ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 ) ) ‘ 𝑋 ) ) ) | 
						
							| 24 | 19 | resmptd | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝑆  ↦  𝐴 )  ↾  𝑋 )  =  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) | 
						
							| 25 |  | fconstmpt | ⊢ ( 𝑆  ×  { 𝐴 } )  =  ( 𝑥  ∈  𝑆  ↦  𝐴 ) | 
						
							| 26 | 25 | reseq1i | ⊢ ( ( 𝑆  ×  { 𝐴 } )  ↾  𝑋 )  =  ( ( 𝑥  ∈  𝑆  ↦  𝐴 )  ↾  𝑋 ) | 
						
							| 27 |  | fconstmpt | ⊢ ( 𝑋  ×  { 𝐴 } )  =  ( 𝑥  ∈  𝑋  ↦  𝐴 ) | 
						
							| 28 | 24 26 27 | 3eqtr4g | ⊢ ( 𝜑  →  ( ( 𝑆  ×  { 𝐴 } )  ↾  𝑋 )  =  ( 𝑋  ×  { 𝐴 } ) ) | 
						
							| 29 | 28 | oveq2d | ⊢ ( 𝜑  →  ( 𝑆  D  ( ( 𝑆  ×  { 𝐴 } )  ↾  𝑋 ) )  =  ( 𝑆  D  ( 𝑋  ×  { 𝐴 } ) ) ) | 
						
							| 30 | 19 | resmptd | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝑆  ↦  0 )  ↾  𝑋 )  =  ( 𝑥  ∈  𝑋  ↦  0 ) ) | 
						
							| 31 |  | fconstg | ⊢ ( 𝐴  ∈  ℂ  →  ( ℂ  ×  { 𝐴 } ) : ℂ ⟶ { 𝐴 } ) | 
						
							| 32 | 3 31 | syl | ⊢ ( 𝜑  →  ( ℂ  ×  { 𝐴 } ) : ℂ ⟶ { 𝐴 } ) | 
						
							| 33 | 32 7 | fssd | ⊢ ( 𝜑  →  ( ℂ  ×  { 𝐴 } ) : ℂ ⟶ ℂ ) | 
						
							| 34 |  | ssidd | ⊢ ( 𝜑  →  ℂ  ⊆  ℂ ) | 
						
							| 35 |  | dvconst | ⊢ ( 𝐴  ∈  ℂ  →  ( ℂ  D  ( ℂ  ×  { 𝐴 } ) )  =  ( ℂ  ×  { 0 } ) ) | 
						
							| 36 | 3 35 | syl | ⊢ ( 𝜑  →  ( ℂ  D  ( ℂ  ×  { 𝐴 } ) )  =  ( ℂ  ×  { 0 } ) ) | 
						
							| 37 | 36 | dmeqd | ⊢ ( 𝜑  →  dom  ( ℂ  D  ( ℂ  ×  { 𝐴 } ) )  =  dom  ( ℂ  ×  { 0 } ) ) | 
						
							| 38 | 9 | fconst | ⊢ ( ℂ  ×  { 0 } ) : ℂ ⟶ { 0 } | 
						
							| 39 | 38 | fdmi | ⊢ dom  ( ℂ  ×  { 0 } )  =  ℂ | 
						
							| 40 | 37 39 | eqtrdi | ⊢ ( 𝜑  →  dom  ( ℂ  D  ( ℂ  ×  { 𝐴 } ) )  =  ℂ ) | 
						
							| 41 | 12 40 | sseqtrrd | ⊢ ( 𝜑  →  𝑆  ⊆  dom  ( ℂ  D  ( ℂ  ×  { 𝐴 } ) ) ) | 
						
							| 42 |  | dvres3 | ⊢ ( ( ( 𝑆  ∈  { ℝ ,  ℂ }  ∧  ( ℂ  ×  { 𝐴 } ) : ℂ ⟶ ℂ )  ∧  ( ℂ  ⊆  ℂ  ∧  𝑆  ⊆  dom  ( ℂ  D  ( ℂ  ×  { 𝐴 } ) ) ) )  →  ( 𝑆  D  ( ( ℂ  ×  { 𝐴 } )  ↾  𝑆 ) )  =  ( ( ℂ  D  ( ℂ  ×  { 𝐴 } ) )  ↾  𝑆 ) ) | 
						
							| 43 | 1 33 34 41 42 | syl22anc | ⊢ ( 𝜑  →  ( 𝑆  D  ( ( ℂ  ×  { 𝐴 } )  ↾  𝑆 ) )  =  ( ( ℂ  D  ( ℂ  ×  { 𝐴 } ) )  ↾  𝑆 ) ) | 
						
							| 44 |  | xpssres | ⊢ ( 𝑆  ⊆  ℂ  →  ( ( ℂ  ×  { 𝐴 } )  ↾  𝑆 )  =  ( 𝑆  ×  { 𝐴 } ) ) | 
						
							| 45 | 12 44 | syl | ⊢ ( 𝜑  →  ( ( ℂ  ×  { 𝐴 } )  ↾  𝑆 )  =  ( 𝑆  ×  { 𝐴 } ) ) | 
						
							| 46 | 45 | oveq2d | ⊢ ( 𝜑  →  ( 𝑆  D  ( ( ℂ  ×  { 𝐴 } )  ↾  𝑆 ) )  =  ( 𝑆  D  ( 𝑆  ×  { 𝐴 } ) ) ) | 
						
							| 47 | 36 | reseq1d | ⊢ ( 𝜑  →  ( ( ℂ  D  ( ℂ  ×  { 𝐴 } ) )  ↾  𝑆 )  =  ( ( ℂ  ×  { 0 } )  ↾  𝑆 ) ) | 
						
							| 48 |  | xpssres | ⊢ ( 𝑆  ⊆  ℂ  →  ( ( ℂ  ×  { 0 } )  ↾  𝑆 )  =  ( 𝑆  ×  { 0 } ) ) | 
						
							| 49 | 12 48 | syl | ⊢ ( 𝜑  →  ( ( ℂ  ×  { 0 } )  ↾  𝑆 )  =  ( 𝑆  ×  { 0 } ) ) | 
						
							| 50 | 47 49 | eqtrd | ⊢ ( 𝜑  →  ( ( ℂ  D  ( ℂ  ×  { 𝐴 } ) )  ↾  𝑆 )  =  ( 𝑆  ×  { 0 } ) ) | 
						
							| 51 | 43 46 50 | 3eqtr3d | ⊢ ( 𝜑  →  ( 𝑆  D  ( 𝑆  ×  { 𝐴 } ) )  =  ( 𝑆  ×  { 0 } ) ) | 
						
							| 52 |  | fconstmpt | ⊢ ( 𝑆  ×  { 0 } )  =  ( 𝑥  ∈  𝑆  ↦  0 ) | 
						
							| 53 | 51 52 | eqtrdi | ⊢ ( 𝜑  →  ( 𝑆  D  ( 𝑆  ×  { 𝐴 } ) )  =  ( 𝑥  ∈  𝑆  ↦  0 ) ) | 
						
							| 54 | 20 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ ) | 
						
							| 55 |  | resttopon | ⊢ ( ( ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ )  ∧  𝑆  ⊆  ℂ )  →  ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 )  ∈  ( TopOn ‘ 𝑆 ) ) | 
						
							| 56 | 54 12 55 | sylancr | ⊢ ( 𝜑  →  ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 )  ∈  ( TopOn ‘ 𝑆 ) ) | 
						
							| 57 |  | topontop | ⊢ ( ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 )  ∈  ( TopOn ‘ 𝑆 )  →  ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 )  ∈  Top ) | 
						
							| 58 | 56 57 | syl | ⊢ ( 𝜑  →  ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 )  ∈  Top ) | 
						
							| 59 |  | toponuni | ⊢ ( ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 )  ∈  ( TopOn ‘ 𝑆 )  →  𝑆  =  ∪  ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 ) ) | 
						
							| 60 | 56 59 | syl | ⊢ ( 𝜑  →  𝑆  =  ∪  ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 ) ) | 
						
							| 61 | 19 60 | sseqtrd | ⊢ ( 𝜑  →  𝑋  ⊆  ∪  ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 ) ) | 
						
							| 62 |  | eqid | ⊢ ∪  ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 )  =  ∪  ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 ) | 
						
							| 63 | 62 | ntrss2 | ⊢ ( ( ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 )  ∈  Top  ∧  𝑋  ⊆  ∪  ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 ) )  →  ( ( int ‘ ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 ) ) ‘ 𝑋 )  ⊆  𝑋 ) | 
						
							| 64 | 58 61 63 | syl2anc | ⊢ ( 𝜑  →  ( ( int ‘ ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 ) ) ‘ 𝑋 )  ⊆  𝑋 ) | 
						
							| 65 | 12 2 19 21 20 | dvbssntr | ⊢ ( 𝜑  →  dom  ( 𝑆  D  𝐹 )  ⊆  ( ( int ‘ ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 ) ) ‘ 𝑋 ) ) | 
						
							| 66 | 4 65 | eqsstrrd | ⊢ ( 𝜑  →  𝑋  ⊆  ( ( int ‘ ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 ) ) ‘ 𝑋 ) ) | 
						
							| 67 | 64 66 | eqssd | ⊢ ( 𝜑  →  ( ( int ‘ ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 ) ) ‘ 𝑋 )  =  𝑋 ) | 
						
							| 68 | 53 67 | reseq12d | ⊢ ( 𝜑  →  ( ( 𝑆  D  ( 𝑆  ×  { 𝐴 } ) )  ↾  ( ( int ‘ ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 ) ) ‘ 𝑋 ) )  =  ( ( 𝑥  ∈  𝑆  ↦  0 )  ↾  𝑋 ) ) | 
						
							| 69 |  | fconstmpt | ⊢ ( 𝑋  ×  { 0 } )  =  ( 𝑥  ∈  𝑋  ↦  0 ) | 
						
							| 70 | 69 | a1i | ⊢ ( 𝜑  →  ( 𝑋  ×  { 0 } )  =  ( 𝑥  ∈  𝑋  ↦  0 ) ) | 
						
							| 71 | 30 68 70 | 3eqtr4d | ⊢ ( 𝜑  →  ( ( 𝑆  D  ( 𝑆  ×  { 𝐴 } ) )  ↾  ( ( int ‘ ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 ) ) ‘ 𝑋 ) )  =  ( 𝑋  ×  { 0 } ) ) | 
						
							| 72 | 23 29 71 | 3eqtr3d | ⊢ ( 𝜑  →  ( 𝑆  D  ( 𝑋  ×  { 𝐴 } ) )  =  ( 𝑋  ×  { 0 } ) ) | 
						
							| 73 | 72 | feq1d | ⊢ ( 𝜑  →  ( ( 𝑆  D  ( 𝑋  ×  { 𝐴 } ) ) : 𝑋 ⟶ { 0 }  ↔  ( 𝑋  ×  { 0 } ) : 𝑋 ⟶ { 0 } ) ) | 
						
							| 74 | 10 73 | mpbiri | ⊢ ( 𝜑  →  ( 𝑆  D  ( 𝑋  ×  { 𝐴 } ) ) : 𝑋 ⟶ { 0 } ) | 
						
							| 75 | 74 | fdmd | ⊢ ( 𝜑  →  dom  ( 𝑆  D  ( 𝑋  ×  { 𝐴 } ) )  =  𝑋 ) | 
						
							| 76 | 1 8 2 75 4 | dvmulf | ⊢ ( 𝜑  →  ( 𝑆  D  ( ( 𝑋  ×  { 𝐴 } )  ∘f   ·  𝐹 ) )  =  ( ( ( 𝑆  D  ( 𝑋  ×  { 𝐴 } ) )  ∘f   ·  𝐹 )  ∘f   +  ( ( 𝑆  D  𝐹 )  ∘f   ·  ( 𝑋  ×  { 𝐴 } ) ) ) ) | 
						
							| 77 |  | sseqin2 | ⊢ ( 𝑋  ⊆  𝑆  ↔  ( 𝑆  ∩  𝑋 )  =  𝑋 ) | 
						
							| 78 | 19 77 | sylib | ⊢ ( 𝜑  →  ( 𝑆  ∩  𝑋 )  =  𝑋 ) | 
						
							| 79 | 78 | mpteq1d | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑆  ∩  𝑋 )  ↦  ( 𝐴  ·  ( 𝐹 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  ·  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 80 | 14 | ffnd | ⊢ ( 𝜑  →  ( 𝑆  ×  { 𝐴 } )  Fn  𝑆 ) | 
						
							| 81 | 2 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  𝑋 ) | 
						
							| 82 | 1 19 | ssexd | ⊢ ( 𝜑  →  𝑋  ∈  V ) | 
						
							| 83 |  | eqid | ⊢ ( 𝑆  ∩  𝑋 )  =  ( 𝑆  ∩  𝑋 ) | 
						
							| 84 |  | fvconst2g | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑥  ∈  𝑆 )  →  ( ( 𝑆  ×  { 𝐴 } ) ‘ 𝑥 )  =  𝐴 ) | 
						
							| 85 | 3 84 | sylan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑆 )  →  ( ( 𝑆  ×  { 𝐴 } ) ‘ 𝑥 )  =  𝐴 ) | 
						
							| 86 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 87 | 80 81 1 82 83 85 86 | offval | ⊢ ( 𝜑  →  ( ( 𝑆  ×  { 𝐴 } )  ∘f   ·  𝐹 )  =  ( 𝑥  ∈  ( 𝑆  ∩  𝑋 )  ↦  ( 𝐴  ·  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 88 | 6 | ffnd | ⊢ ( 𝜑  →  ( 𝑋  ×  { 𝐴 } )  Fn  𝑋 ) | 
						
							| 89 |  | inidm | ⊢ ( 𝑋  ∩  𝑋 )  =  𝑋 | 
						
							| 90 |  | fvconst2g | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝑋  ×  { 𝐴 } ) ‘ 𝑥 )  =  𝐴 ) | 
						
							| 91 | 3 90 | sylan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝑋  ×  { 𝐴 } ) ‘ 𝑥 )  =  𝐴 ) | 
						
							| 92 | 88 81 82 82 89 91 86 | offval | ⊢ ( 𝜑  →  ( ( 𝑋  ×  { 𝐴 } )  ∘f   ·  𝐹 )  =  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  ·  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 93 | 79 87 92 | 3eqtr4d | ⊢ ( 𝜑  →  ( ( 𝑆  ×  { 𝐴 } )  ∘f   ·  𝐹 )  =  ( ( 𝑋  ×  { 𝐴 } )  ∘f   ·  𝐹 ) ) | 
						
							| 94 | 93 | oveq2d | ⊢ ( 𝜑  →  ( 𝑆  D  ( ( 𝑆  ×  { 𝐴 } )  ∘f   ·  𝐹 ) )  =  ( 𝑆  D  ( ( 𝑋  ×  { 𝐴 } )  ∘f   ·  𝐹 ) ) ) | 
						
							| 95 | 78 | mpteq1d | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑆  ∩  𝑋 )  ↦  ( 𝐴  ·  ( ( 𝑆  D  𝐹 ) ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  ·  ( ( 𝑆  D  𝐹 ) ‘ 𝑥 ) ) ) ) | 
						
							| 96 |  | dvfg | ⊢ ( 𝑆  ∈  { ℝ ,  ℂ }  →  ( 𝑆  D  𝐹 ) : dom  ( 𝑆  D  𝐹 ) ⟶ ℂ ) | 
						
							| 97 | 1 96 | syl | ⊢ ( 𝜑  →  ( 𝑆  D  𝐹 ) : dom  ( 𝑆  D  𝐹 ) ⟶ ℂ ) | 
						
							| 98 | 4 | feq2d | ⊢ ( 𝜑  →  ( ( 𝑆  D  𝐹 ) : dom  ( 𝑆  D  𝐹 ) ⟶ ℂ  ↔  ( 𝑆  D  𝐹 ) : 𝑋 ⟶ ℂ ) ) | 
						
							| 99 | 97 98 | mpbid | ⊢ ( 𝜑  →  ( 𝑆  D  𝐹 ) : 𝑋 ⟶ ℂ ) | 
						
							| 100 | 99 | ffnd | ⊢ ( 𝜑  →  ( 𝑆  D  𝐹 )  Fn  𝑋 ) | 
						
							| 101 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝑆  D  𝐹 ) ‘ 𝑥 )  =  ( ( 𝑆  D  𝐹 ) ‘ 𝑥 ) ) | 
						
							| 102 | 80 100 1 82 83 85 101 | offval | ⊢ ( 𝜑  →  ( ( 𝑆  ×  { 𝐴 } )  ∘f   ·  ( 𝑆  D  𝐹 ) )  =  ( 𝑥  ∈  ( 𝑆  ∩  𝑋 )  ↦  ( 𝐴  ·  ( ( 𝑆  D  𝐹 ) ‘ 𝑥 ) ) ) ) | 
						
							| 103 |  | 0cnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  0  ∈  ℂ ) | 
						
							| 104 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( ( 𝑆  D  𝐹 ) ‘ 𝑥 )  ·  𝐴 )  ∈  V ) | 
						
							| 105 | 72 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝑆  D  ( 𝑋  ×  { 𝐴 } ) )  ∘f   ·  𝐹 )  =  ( ( 𝑋  ×  { 0 } )  ∘f   ·  𝐹 ) ) | 
						
							| 106 |  | 0cnd | ⊢ ( 𝜑  →  0  ∈  ℂ ) | 
						
							| 107 |  | mul02 | ⊢ ( 𝑥  ∈  ℂ  →  ( 0  ·  𝑥 )  =  0 ) | 
						
							| 108 | 107 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℂ )  →  ( 0  ·  𝑥 )  =  0 ) | 
						
							| 109 | 82 2 106 106 108 | caofid2 | ⊢ ( 𝜑  →  ( ( 𝑋  ×  { 0 } )  ∘f   ·  𝐹 )  =  ( 𝑋  ×  { 0 } ) ) | 
						
							| 110 | 105 109 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝑆  D  ( 𝑋  ×  { 𝐴 } ) )  ∘f   ·  𝐹 )  =  ( 𝑋  ×  { 0 } ) ) | 
						
							| 111 | 110 69 | eqtrdi | ⊢ ( 𝜑  →  ( ( 𝑆  D  ( 𝑋  ×  { 𝐴 } ) )  ∘f   ·  𝐹 )  =  ( 𝑥  ∈  𝑋  ↦  0 ) ) | 
						
							| 112 |  | fvexd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝑆  D  𝐹 ) ‘ 𝑥 )  ∈  V ) | 
						
							| 113 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐴  ∈  ℂ ) | 
						
							| 114 | 99 | feqmptd | ⊢ ( 𝜑  →  ( 𝑆  D  𝐹 )  =  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑆  D  𝐹 ) ‘ 𝑥 ) ) ) | 
						
							| 115 | 27 | a1i | ⊢ ( 𝜑  →  ( 𝑋  ×  { 𝐴 } )  =  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) | 
						
							| 116 | 82 112 113 114 115 | offval2 | ⊢ ( 𝜑  →  ( ( 𝑆  D  𝐹 )  ∘f   ·  ( 𝑋  ×  { 𝐴 } ) )  =  ( 𝑥  ∈  𝑋  ↦  ( ( ( 𝑆  D  𝐹 ) ‘ 𝑥 )  ·  𝐴 ) ) ) | 
						
							| 117 | 82 103 104 111 116 | offval2 | ⊢ ( 𝜑  →  ( ( ( 𝑆  D  ( 𝑋  ×  { 𝐴 } ) )  ∘f   ·  𝐹 )  ∘f   +  ( ( 𝑆  D  𝐹 )  ∘f   ·  ( 𝑋  ×  { 𝐴 } ) ) )  =  ( 𝑥  ∈  𝑋  ↦  ( 0  +  ( ( ( 𝑆  D  𝐹 ) ‘ 𝑥 )  ·  𝐴 ) ) ) ) | 
						
							| 118 | 99 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝑆  D  𝐹 ) ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 119 | 118 113 | mulcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( ( 𝑆  D  𝐹 ) ‘ 𝑥 )  ·  𝐴 )  ∈  ℂ ) | 
						
							| 120 | 119 | addlidd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 0  +  ( ( ( 𝑆  D  𝐹 ) ‘ 𝑥 )  ·  𝐴 ) )  =  ( ( ( 𝑆  D  𝐹 ) ‘ 𝑥 )  ·  𝐴 ) ) | 
						
							| 121 | 118 113 | mulcomd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( ( 𝑆  D  𝐹 ) ‘ 𝑥 )  ·  𝐴 )  =  ( 𝐴  ·  ( ( 𝑆  D  𝐹 ) ‘ 𝑥 ) ) ) | 
						
							| 122 | 120 121 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 0  +  ( ( ( 𝑆  D  𝐹 ) ‘ 𝑥 )  ·  𝐴 ) )  =  ( 𝐴  ·  ( ( 𝑆  D  𝐹 ) ‘ 𝑥 ) ) ) | 
						
							| 123 | 122 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  ( 0  +  ( ( ( 𝑆  D  𝐹 ) ‘ 𝑥 )  ·  𝐴 ) ) )  =  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  ·  ( ( 𝑆  D  𝐹 ) ‘ 𝑥 ) ) ) ) | 
						
							| 124 | 117 123 | eqtrd | ⊢ ( 𝜑  →  ( ( ( 𝑆  D  ( 𝑋  ×  { 𝐴 } ) )  ∘f   ·  𝐹 )  ∘f   +  ( ( 𝑆  D  𝐹 )  ∘f   ·  ( 𝑋  ×  { 𝐴 } ) ) )  =  ( 𝑥  ∈  𝑋  ↦  ( 𝐴  ·  ( ( 𝑆  D  𝐹 ) ‘ 𝑥 ) ) ) ) | 
						
							| 125 | 95 102 124 | 3eqtr4d | ⊢ ( 𝜑  →  ( ( 𝑆  ×  { 𝐴 } )  ∘f   ·  ( 𝑆  D  𝐹 ) )  =  ( ( ( 𝑆  D  ( 𝑋  ×  { 𝐴 } ) )  ∘f   ·  𝐹 )  ∘f   +  ( ( 𝑆  D  𝐹 )  ∘f   ·  ( 𝑋  ×  { 𝐴 } ) ) ) ) | 
						
							| 126 | 76 94 125 | 3eqtr4d | ⊢ ( 𝜑  →  ( 𝑆  D  ( ( 𝑆  ×  { 𝐴 } )  ∘f   ·  𝐹 ) )  =  ( ( 𝑆  ×  { 𝐴 } )  ∘f   ·  ( 𝑆  D  𝐹 ) ) ) |