| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl2 |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ dom ( 𝑆 D 𝐹 ) = 𝐴 ) → 𝐹 : 𝐴 ⟶ ℂ ) |
| 2 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) |
| 3 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 4 |
2 3
|
dvcnp2 |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝑥 ∈ dom ( 𝑆 D 𝐹 ) ) → 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) |
| 5 |
4
|
ralrimiva |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → ∀ 𝑥 ∈ dom ( 𝑆 D 𝐹 ) 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) |
| 6 |
|
raleq |
⊢ ( dom ( 𝑆 D 𝐹 ) = 𝐴 → ( ∀ 𝑥 ∈ dom ( 𝑆 D 𝐹 ) 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐴 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) |
| 7 |
6
|
biimpd |
⊢ ( dom ( 𝑆 D 𝐹 ) = 𝐴 → ( ∀ 𝑥 ∈ dom ( 𝑆 D 𝐹 ) 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) → ∀ 𝑥 ∈ 𝐴 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) |
| 8 |
5 7
|
mpan9 |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ dom ( 𝑆 D 𝐹 ) = 𝐴 ) → ∀ 𝑥 ∈ 𝐴 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) |
| 9 |
3
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 10 |
|
simpl3 |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ dom ( 𝑆 D 𝐹 ) = 𝐴 ) → 𝐴 ⊆ 𝑆 ) |
| 11 |
|
simpl1 |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ dom ( 𝑆 D 𝐹 ) = 𝐴 ) → 𝑆 ⊆ ℂ ) |
| 12 |
10 11
|
sstrd |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ dom ( 𝑆 D 𝐹 ) = 𝐴 ) → 𝐴 ⊆ ℂ ) |
| 13 |
|
resttopon |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ 𝐴 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ) |
| 14 |
9 12 13
|
sylancr |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ dom ( 𝑆 D 𝐹 ) = 𝐴 ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ) |
| 15 |
|
cncnp |
⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ∧ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) → ( 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) ) |
| 16 |
14 9 15
|
sylancl |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ dom ( 𝑆 D 𝐹 ) = 𝐴 ) → ( 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) ) |
| 17 |
1 8 16
|
mpbir2and |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ dom ( 𝑆 D 𝐹 ) = 𝐴 ) → 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 18 |
|
ssid |
⊢ ℂ ⊆ ℂ |
| 19 |
9
|
toponrestid |
⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
| 20 |
3 2 19
|
cncfcn |
⊢ ( ( 𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝐴 –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 21 |
12 18 20
|
sylancl |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ dom ( 𝑆 D 𝐹 ) = 𝐴 ) → ( 𝐴 –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 22 |
17 21
|
eleqtrrd |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ dom ( 𝑆 D 𝐹 ) = 𝐴 ) → 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) |