Step |
Hyp |
Ref |
Expression |
1 |
|
dvcnp.j |
⊢ 𝐽 = ( 𝐾 ↾t 𝐴 ) |
2 |
|
dvcnp.k |
⊢ 𝐾 = ( TopOpen ‘ ℂfld ) |
3 |
|
dvcnp.g |
⊢ 𝐺 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 = 𝐵 , ( ( 𝑆 D 𝐹 ) ‘ 𝐵 ) , ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ) ) |
4 |
|
dvfg |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) |
5 |
4
|
3ad2ant1 |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) |
6 |
|
ffun |
⊢ ( ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ → Fun ( 𝑆 D 𝐹 ) ) |
7 |
|
funfvbrb |
⊢ ( Fun ( 𝑆 D 𝐹 ) → ( 𝐵 ∈ dom ( 𝑆 D 𝐹 ) ↔ 𝐵 ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ 𝐵 ) ) ) |
8 |
5 6 7
|
3syl |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → ( 𝐵 ∈ dom ( 𝑆 D 𝐹 ) ↔ 𝐵 ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ 𝐵 ) ) ) |
9 |
|
eqid |
⊢ ( 𝐾 ↾t 𝑆 ) = ( 𝐾 ↾t 𝑆 ) |
10 |
|
eqid |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ) = ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ) |
11 |
|
recnprss |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) |
12 |
11
|
3ad2ant1 |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → 𝑆 ⊆ ℂ ) |
13 |
|
simp2 |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → 𝐹 : 𝐴 ⟶ ℂ ) |
14 |
|
simp3 |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → 𝐴 ⊆ 𝑆 ) |
15 |
9 2 10 12 13 14
|
eldv |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → ( 𝐵 ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ 𝐵 ) ↔ ( 𝐵 ∈ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ 𝐴 ) ∧ ( ( 𝑆 D 𝐹 ) ‘ 𝐵 ) ∈ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ) limℂ 𝐵 ) ) ) ) |
16 |
8 15
|
bitrd |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → ( 𝐵 ∈ dom ( 𝑆 D 𝐹 ) ↔ ( 𝐵 ∈ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ 𝐴 ) ∧ ( ( 𝑆 D 𝐹 ) ‘ 𝐵 ) ∈ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ) limℂ 𝐵 ) ) ) ) |
17 |
16
|
simplbda |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ∈ dom ( 𝑆 D 𝐹 ) ) → ( ( 𝑆 D 𝐹 ) ‘ 𝐵 ) ∈ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ) limℂ 𝐵 ) ) |
18 |
14 12
|
sstrd |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → 𝐴 ⊆ ℂ ) |
19 |
18
|
adantr |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ∈ dom ( 𝑆 D 𝐹 ) ) → 𝐴 ⊆ ℂ ) |
20 |
12 13 14
|
dvbss |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → dom ( 𝑆 D 𝐹 ) ⊆ 𝐴 ) |
21 |
20
|
sselda |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ∈ dom ( 𝑆 D 𝐹 ) ) → 𝐵 ∈ 𝐴 ) |
22 |
|
eldifsn |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↔ ( 𝑧 ∈ 𝐴 ∧ 𝑧 ≠ 𝐵 ) ) |
23 |
13
|
adantr |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ∈ dom ( 𝑆 D 𝐹 ) ) → 𝐹 : 𝐴 ⟶ ℂ ) |
24 |
23 19 21
|
dvlem |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ∈ dom ( 𝑆 D 𝐹 ) ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ∈ ℂ ) |
25 |
22 24
|
sylan2br |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ∈ dom ( 𝑆 D 𝐹 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑧 ≠ 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ∈ ℂ ) |
26 |
19 21 25 1 2
|
limcmpt2 |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ∈ dom ( 𝑆 D 𝐹 ) ) → ( ( ( 𝑆 D 𝐹 ) ‘ 𝐵 ) ∈ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ) limℂ 𝐵 ) ↔ ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 = 𝐵 , ( ( 𝑆 D 𝐹 ) ‘ 𝐵 ) , ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) ) |
27 |
17 26
|
mpbid |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ∈ dom ( 𝑆 D 𝐹 ) ) → ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 = 𝐵 , ( ( 𝑆 D 𝐹 ) ‘ 𝐵 ) , ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) |
28 |
3 27
|
eqeltrid |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ∈ dom ( 𝑆 D 𝐹 ) ) → 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) |