| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvcnp.j |
⊢ 𝐽 = ( 𝐾 ↾t 𝐴 ) |
| 2 |
|
dvcnp.k |
⊢ 𝐾 = ( TopOpen ‘ ℂfld ) |
| 3 |
|
simpl2 |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝐹 : 𝐴 ⟶ ℂ ) |
| 4 |
3
|
ffvelcdmda |
⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 5 |
2
|
cnfldtop |
⊢ 𝐾 ∈ Top |
| 6 |
|
simpl1 |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝑆 ⊆ ℂ ) |
| 7 |
|
cnex |
⊢ ℂ ∈ V |
| 8 |
|
ssexg |
⊢ ( ( 𝑆 ⊆ ℂ ∧ ℂ ∈ V ) → 𝑆 ∈ V ) |
| 9 |
6 7 8
|
sylancl |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝑆 ∈ V ) |
| 10 |
|
resttop |
⊢ ( ( 𝐾 ∈ Top ∧ 𝑆 ∈ V ) → ( 𝐾 ↾t 𝑆 ) ∈ Top ) |
| 11 |
5 9 10
|
sylancr |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝐾 ↾t 𝑆 ) ∈ Top ) |
| 12 |
|
simpl3 |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝐴 ⊆ 𝑆 ) |
| 13 |
2
|
cnfldtopon |
⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
| 14 |
|
resttopon |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( 𝐾 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
| 15 |
13 6 14
|
sylancr |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝐾 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
| 16 |
|
toponuni |
⊢ ( ( 𝐾 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) → 𝑆 = ∪ ( 𝐾 ↾t 𝑆 ) ) |
| 17 |
15 16
|
syl |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝑆 = ∪ ( 𝐾 ↾t 𝑆 ) ) |
| 18 |
12 17
|
sseqtrd |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝐴 ⊆ ∪ ( 𝐾 ↾t 𝑆 ) ) |
| 19 |
|
eqid |
⊢ ∪ ( 𝐾 ↾t 𝑆 ) = ∪ ( 𝐾 ↾t 𝑆 ) |
| 20 |
19
|
ntrss2 |
⊢ ( ( ( 𝐾 ↾t 𝑆 ) ∈ Top ∧ 𝐴 ⊆ ∪ ( 𝐾 ↾t 𝑆 ) ) → ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ 𝐴 ) ⊆ 𝐴 ) |
| 21 |
11 18 20
|
syl2anc |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ 𝐴 ) ⊆ 𝐴 ) |
| 22 |
|
eqid |
⊢ ( 𝐾 ↾t 𝑆 ) = ( 𝐾 ↾t 𝑆 ) |
| 23 |
|
eqid |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ) = ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ) |
| 24 |
|
simp1 |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → 𝑆 ⊆ ℂ ) |
| 25 |
|
simp2 |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → 𝐹 : 𝐴 ⟶ ℂ ) |
| 26 |
|
simp3 |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → 𝐴 ⊆ 𝑆 ) |
| 27 |
22 2 23 24 25 26
|
eldv |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → ( 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ↔ ( 𝐵 ∈ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ) limℂ 𝐵 ) ) ) ) |
| 28 |
27
|
simprbda |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝐵 ∈ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ 𝐴 ) ) |
| 29 |
21 28
|
sseldd |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝐵 ∈ 𝐴 ) |
| 30 |
3 29
|
ffvelcdmd |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝐹 ‘ 𝐵 ) ∈ ℂ ) |
| 31 |
30
|
adantr |
⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝐵 ) ∈ ℂ ) |
| 32 |
4 31
|
subcld |
⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ∈ ℂ ) |
| 33 |
|
ssidd |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ℂ ⊆ ℂ ) |
| 34 |
|
txtopon |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ 𝐾 ∈ ( TopOn ‘ ℂ ) ) → ( 𝐾 ×t 𝐾 ) ∈ ( TopOn ‘ ( ℂ × ℂ ) ) ) |
| 35 |
13 13 34
|
mp2an |
⊢ ( 𝐾 ×t 𝐾 ) ∈ ( TopOn ‘ ( ℂ × ℂ ) ) |
| 36 |
35
|
toponrestid |
⊢ ( 𝐾 ×t 𝐾 ) = ( ( 𝐾 ×t 𝐾 ) ↾t ( ℂ × ℂ ) ) |
| 37 |
12 6
|
sstrd |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝐴 ⊆ ℂ ) |
| 38 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑥 − 𝐵 ) ) ) = ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑥 − 𝐵 ) ) ) |
| 39 |
22 2 38 24 25 26
|
eldv |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → ( 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ↔ ( 𝐵 ∈ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑥 − 𝐵 ) ) ) limℂ 𝐵 ) ) ) ) |
| 40 |
39
|
simprbda |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝐵 ∈ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ 𝐴 ) ) |
| 41 |
21 40
|
sseldd |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝐵 ∈ 𝐴 ) |
| 42 |
3 37 41
|
dvlem |
⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ∈ ℂ ) |
| 43 |
37
|
ssdifssd |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝐴 ∖ { 𝐵 } ) ⊆ ℂ ) |
| 44 |
43
|
sselda |
⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → 𝑧 ∈ ℂ ) |
| 45 |
37 41
|
sseldd |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝐵 ∈ ℂ ) |
| 46 |
45
|
adantr |
⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → 𝐵 ∈ ℂ ) |
| 47 |
44 46
|
subcld |
⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → ( 𝑧 − 𝐵 ) ∈ ℂ ) |
| 48 |
27
|
simplbda |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝑦 ∈ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ) limℂ 𝐵 ) ) |
| 49 |
|
limcresi |
⊢ ( ( 𝑧 ∈ 𝐴 ↦ ( 𝑧 − 𝐵 ) ) limℂ 𝐵 ) ⊆ ( ( ( 𝑧 ∈ 𝐴 ↦ ( 𝑧 − 𝐵 ) ) ↾ ( 𝐴 ∖ { 𝐵 } ) ) limℂ 𝐵 ) |
| 50 |
|
difss |
⊢ ( 𝐴 ∖ { 𝐵 } ) ⊆ 𝐴 |
| 51 |
|
resmpt |
⊢ ( ( 𝐴 ∖ { 𝐵 } ) ⊆ 𝐴 → ( ( 𝑧 ∈ 𝐴 ↦ ( 𝑧 − 𝐵 ) ) ↾ ( 𝐴 ∖ { 𝐵 } ) ) = ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( 𝑧 − 𝐵 ) ) ) |
| 52 |
50 51
|
ax-mp |
⊢ ( ( 𝑧 ∈ 𝐴 ↦ ( 𝑧 − 𝐵 ) ) ↾ ( 𝐴 ∖ { 𝐵 } ) ) = ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( 𝑧 − 𝐵 ) ) |
| 53 |
52
|
oveq1i |
⊢ ( ( ( 𝑧 ∈ 𝐴 ↦ ( 𝑧 − 𝐵 ) ) ↾ ( 𝐴 ∖ { 𝐵 } ) ) limℂ 𝐵 ) = ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( 𝑧 − 𝐵 ) ) limℂ 𝐵 ) |
| 54 |
49 53
|
sseqtri |
⊢ ( ( 𝑧 ∈ 𝐴 ↦ ( 𝑧 − 𝐵 ) ) limℂ 𝐵 ) ⊆ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( 𝑧 − 𝐵 ) ) limℂ 𝐵 ) |
| 55 |
45
|
subidd |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝐵 − 𝐵 ) = 0 ) |
| 56 |
|
ssid |
⊢ ℂ ⊆ ℂ |
| 57 |
|
cncfmptid |
⊢ ( ( 𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑧 ∈ 𝐴 ↦ 𝑧 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 58 |
37 56 57
|
sylancl |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝑧 ∈ 𝐴 ↦ 𝑧 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 59 |
|
cncfmptc |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 60 |
45 37 33 59
|
syl3anc |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 61 |
58 60
|
subcncf |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝑧 ∈ 𝐴 ↦ ( 𝑧 − 𝐵 ) ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 62 |
|
oveq1 |
⊢ ( 𝑧 = 𝐵 → ( 𝑧 − 𝐵 ) = ( 𝐵 − 𝐵 ) ) |
| 63 |
61 41 62
|
cnmptlimc |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝐵 − 𝐵 ) ∈ ( ( 𝑧 ∈ 𝐴 ↦ ( 𝑧 − 𝐵 ) ) limℂ 𝐵 ) ) |
| 64 |
55 63
|
eqeltrrd |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 0 ∈ ( ( 𝑧 ∈ 𝐴 ↦ ( 𝑧 − 𝐵 ) ) limℂ 𝐵 ) ) |
| 65 |
54 64
|
sselid |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 0 ∈ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( 𝑧 − 𝐵 ) ) limℂ 𝐵 ) ) |
| 66 |
2
|
mpomulcn |
⊢ ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) |
| 67 |
24 25 26
|
dvcl |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝑦 ∈ ℂ ) |
| 68 |
|
0cn |
⊢ 0 ∈ ℂ |
| 69 |
|
opelxpi |
⊢ ( ( 𝑦 ∈ ℂ ∧ 0 ∈ ℂ ) → 〈 𝑦 , 0 〉 ∈ ( ℂ × ℂ ) ) |
| 70 |
67 68 69
|
sylancl |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 〈 𝑦 , 0 〉 ∈ ( ℂ × ℂ ) ) |
| 71 |
35
|
toponunii |
⊢ ( ℂ × ℂ ) = ∪ ( 𝐾 ×t 𝐾 ) |
| 72 |
71
|
cncnpi |
⊢ ( ( ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) ∧ 〈 𝑦 , 0 〉 ∈ ( ℂ × ℂ ) ) → ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ∈ ( ( ( 𝐾 ×t 𝐾 ) CnP 𝐾 ) ‘ 〈 𝑦 , 0 〉 ) ) |
| 73 |
66 70 72
|
sylancr |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ∈ ( ( ( 𝐾 ×t 𝐾 ) CnP 𝐾 ) ‘ 〈 𝑦 , 0 〉 ) ) |
| 74 |
42 47 33 33 2 36 48 65 73
|
limccnp2 |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝑦 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 0 ) ∈ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ( 𝑧 − 𝐵 ) ) ) limℂ 𝐵 ) ) |
| 75 |
|
df-mpt |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ( 𝑧 − 𝐵 ) ) ) = { 〈 𝑧 , 𝑤 〉 ∣ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ∧ 𝑤 = ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ( 𝑧 − 𝐵 ) ) ) } |
| 76 |
75
|
oveq1i |
⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ( 𝑧 − 𝐵 ) ) ) limℂ 𝐵 ) = ( { 〈 𝑧 , 𝑤 〉 ∣ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ∧ 𝑤 = ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ( 𝑧 − 𝐵 ) ) ) } limℂ 𝐵 ) |
| 77 |
74 76
|
eleqtrdi |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝑦 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 0 ) ∈ ( { 〈 𝑧 , 𝑤 〉 ∣ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ∧ 𝑤 = ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ( 𝑧 − 𝐵 ) ) ) } limℂ 𝐵 ) ) |
| 78 |
|
0cnd |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 0 ∈ ℂ ) |
| 79 |
|
ovmpot |
⊢ ( ( 𝑦 ∈ ℂ ∧ 0 ∈ ℂ ) → ( 𝑦 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 0 ) = ( 𝑦 · 0 ) ) |
| 80 |
67 78 79
|
syl2anc |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝑦 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 0 ) = ( 𝑦 · 0 ) ) |
| 81 |
3 37 29
|
dvlem |
⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ∈ ℂ ) |
| 82 |
37 29
|
sseldd |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝐵 ∈ ℂ ) |
| 83 |
82
|
adantr |
⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → 𝐵 ∈ ℂ ) |
| 84 |
44 83
|
subcld |
⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → ( 𝑧 − 𝐵 ) ∈ ℂ ) |
| 85 |
|
ovmpot |
⊢ ( ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ∈ ℂ ∧ ( 𝑧 − 𝐵 ) ∈ ℂ ) → ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ( 𝑧 − 𝐵 ) ) = ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) · ( 𝑧 − 𝐵 ) ) ) |
| 86 |
81 84 85
|
syl2anc |
⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ( 𝑧 − 𝐵 ) ) = ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) · ( 𝑧 − 𝐵 ) ) ) |
| 87 |
86
|
eqeq2d |
⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → ( 𝑤 = ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ( 𝑧 − 𝐵 ) ) ↔ 𝑤 = ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) · ( 𝑧 − 𝐵 ) ) ) ) |
| 88 |
87
|
pm5.32da |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ∧ 𝑤 = ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ( 𝑧 − 𝐵 ) ) ) ↔ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ∧ 𝑤 = ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) · ( 𝑧 − 𝐵 ) ) ) ) ) |
| 89 |
88
|
opabbidv |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → { 〈 𝑧 , 𝑤 〉 ∣ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ∧ 𝑤 = ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ( 𝑧 − 𝐵 ) ) ) } = { 〈 𝑧 , 𝑤 〉 ∣ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ∧ 𝑤 = ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) · ( 𝑧 − 𝐵 ) ) ) } ) |
| 90 |
|
df-mpt |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) · ( 𝑧 − 𝐵 ) ) ) = { 〈 𝑧 , 𝑤 〉 ∣ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ∧ 𝑤 = ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) · ( 𝑧 − 𝐵 ) ) ) } |
| 91 |
89 90
|
eqtr4di |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → { 〈 𝑧 , 𝑤 〉 ∣ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ∧ 𝑤 = ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ( 𝑧 − 𝐵 ) ) ) } = ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) · ( 𝑧 − 𝐵 ) ) ) ) |
| 92 |
91
|
oveq1d |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( { 〈 𝑧 , 𝑤 〉 ∣ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ∧ 𝑤 = ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ( 𝑧 − 𝐵 ) ) ) } limℂ 𝐵 ) = ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) · ( 𝑧 − 𝐵 ) ) ) limℂ 𝐵 ) ) |
| 93 |
77 80 92
|
3eltr3d |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝑦 · 0 ) ∈ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) · ( 𝑧 − 𝐵 ) ) ) limℂ 𝐵 ) ) |
| 94 |
67
|
mul01d |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝑦 · 0 ) = 0 ) |
| 95 |
3
|
adantr |
⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → 𝐹 : 𝐴 ⟶ ℂ ) |
| 96 |
|
simpr |
⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) |
| 97 |
50 96
|
sselid |
⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → 𝑧 ∈ 𝐴 ) |
| 98 |
95 97
|
ffvelcdmd |
⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 99 |
30
|
adantr |
⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → ( 𝐹 ‘ 𝐵 ) ∈ ℂ ) |
| 100 |
98 99
|
subcld |
⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ∈ ℂ ) |
| 101 |
|
eldifsni |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) → 𝑧 ≠ 𝐵 ) |
| 102 |
101
|
adantl |
⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → 𝑧 ≠ 𝐵 ) |
| 103 |
44 83 102
|
subne0d |
⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → ( 𝑧 − 𝐵 ) ≠ 0 ) |
| 104 |
100 84 103
|
divcan1d |
⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) · ( 𝑧 − 𝐵 ) ) = ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) |
| 105 |
104
|
mpteq2dva |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) · ( 𝑧 − 𝐵 ) ) ) = ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 106 |
105
|
oveq1d |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) · ( 𝑧 − 𝐵 ) ) ) limℂ 𝐵 ) = ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) limℂ 𝐵 ) ) |
| 107 |
93 94 106
|
3eltr3d |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 0 ∈ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) limℂ 𝐵 ) ) |
| 108 |
32
|
fmpttd |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝑧 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) : 𝐴 ⟶ ℂ ) |
| 109 |
108
|
limcdif |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( ( 𝑧 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) limℂ 𝐵 ) = ( ( ( 𝑧 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) ↾ ( 𝐴 ∖ { 𝐵 } ) ) limℂ 𝐵 ) ) |
| 110 |
|
resmpt |
⊢ ( ( 𝐴 ∖ { 𝐵 } ) ⊆ 𝐴 → ( ( 𝑧 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) ↾ ( 𝐴 ∖ { 𝐵 } ) ) = ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 111 |
50 110
|
ax-mp |
⊢ ( ( 𝑧 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) ↾ ( 𝐴 ∖ { 𝐵 } ) ) = ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) |
| 112 |
111
|
oveq1i |
⊢ ( ( ( 𝑧 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) ↾ ( 𝐴 ∖ { 𝐵 } ) ) limℂ 𝐵 ) = ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) limℂ 𝐵 ) |
| 113 |
109 112
|
eqtrdi |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( ( 𝑧 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) limℂ 𝐵 ) = ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) limℂ 𝐵 ) ) |
| 114 |
107 113
|
eleqtrrd |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 0 ∈ ( ( 𝑧 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) limℂ 𝐵 ) ) |
| 115 |
|
cncfmptc |
⊢ ( ( ( 𝐹 ‘ 𝐵 ) ∈ ℂ ∧ 𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑧 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 116 |
30 37 33 115
|
syl3anc |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝑧 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 117 |
|
eqidd |
⊢ ( 𝑧 = 𝐵 → ( 𝐹 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐵 ) ) |
| 118 |
116 29 117
|
cnmptlimc |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝐹 ‘ 𝐵 ) ∈ ( ( 𝑧 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) limℂ 𝐵 ) ) |
| 119 |
2
|
addcn |
⊢ + ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) |
| 120 |
|
opelxpi |
⊢ ( ( 0 ∈ ℂ ∧ ( 𝐹 ‘ 𝐵 ) ∈ ℂ ) → 〈 0 , ( 𝐹 ‘ 𝐵 ) 〉 ∈ ( ℂ × ℂ ) ) |
| 121 |
68 30 120
|
sylancr |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 〈 0 , ( 𝐹 ‘ 𝐵 ) 〉 ∈ ( ℂ × ℂ ) ) |
| 122 |
71
|
cncnpi |
⊢ ( ( + ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) ∧ 〈 0 , ( 𝐹 ‘ 𝐵 ) 〉 ∈ ( ℂ × ℂ ) ) → + ∈ ( ( ( 𝐾 ×t 𝐾 ) CnP 𝐾 ) ‘ 〈 0 , ( 𝐹 ‘ 𝐵 ) 〉 ) ) |
| 123 |
119 121 122
|
sylancr |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → + ∈ ( ( ( 𝐾 ×t 𝐾 ) CnP 𝐾 ) ‘ 〈 0 , ( 𝐹 ‘ 𝐵 ) 〉 ) ) |
| 124 |
32 31 33 33 2 36 114 118 123
|
limccnp2 |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 0 + ( 𝐹 ‘ 𝐵 ) ) ∈ ( ( 𝑧 ∈ 𝐴 ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) + ( 𝐹 ‘ 𝐵 ) ) ) limℂ 𝐵 ) ) |
| 125 |
30
|
addlidd |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 0 + ( 𝐹 ‘ 𝐵 ) ) = ( 𝐹 ‘ 𝐵 ) ) |
| 126 |
4 31
|
npcand |
⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ 𝐴 ) → ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) + ( 𝐹 ‘ 𝐵 ) ) = ( 𝐹 ‘ 𝑧 ) ) |
| 127 |
126
|
mpteq2dva |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝑧 ∈ 𝐴 ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) + ( 𝐹 ‘ 𝐵 ) ) ) = ( 𝑧 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
| 128 |
3
|
feqmptd |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝐹 = ( 𝑧 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
| 129 |
127 128
|
eqtr4d |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝑧 ∈ 𝐴 ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) + ( 𝐹 ‘ 𝐵 ) ) ) = 𝐹 ) |
| 130 |
129
|
oveq1d |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( ( 𝑧 ∈ 𝐴 ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) + ( 𝐹 ‘ 𝐵 ) ) ) limℂ 𝐵 ) = ( 𝐹 limℂ 𝐵 ) ) |
| 131 |
124 125 130
|
3eltr3d |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝐹 ‘ 𝐵 ) ∈ ( 𝐹 limℂ 𝐵 ) ) |
| 132 |
2 1
|
cnplimc |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ↔ ( 𝐹 : 𝐴 ⟶ ℂ ∧ ( 𝐹 ‘ 𝐵 ) ∈ ( 𝐹 limℂ 𝐵 ) ) ) ) |
| 133 |
37 29 132
|
syl2anc |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ↔ ( 𝐹 : 𝐴 ⟶ ℂ ∧ ( 𝐹 ‘ 𝐵 ) ∈ ( 𝐹 limℂ 𝐵 ) ) ) ) |
| 134 |
3 131 133
|
mpbir2and |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) |
| 135 |
134
|
ex |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → ( 𝐵 ( 𝑆 D 𝐹 ) 𝑦 → 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) ) |
| 136 |
135
|
exlimdv |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → ( ∃ 𝑦 𝐵 ( 𝑆 D 𝐹 ) 𝑦 → 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) ) |
| 137 |
|
eldmg |
⊢ ( 𝐵 ∈ dom ( 𝑆 D 𝐹 ) → ( 𝐵 ∈ dom ( 𝑆 D 𝐹 ) ↔ ∃ 𝑦 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ) |
| 138 |
137
|
ibi |
⊢ ( 𝐵 ∈ dom ( 𝑆 D 𝐹 ) → ∃ 𝑦 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) |
| 139 |
136 138
|
impel |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ∈ dom ( 𝑆 D 𝐹 ) ) → 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) |