Step |
Hyp |
Ref |
Expression |
1 |
|
dvcnp.j |
⊢ 𝐽 = ( 𝐾 ↾t 𝐴 ) |
2 |
|
dvcnp.k |
⊢ 𝐾 = ( TopOpen ‘ ℂfld ) |
3 |
|
simpl2 |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝐹 : 𝐴 ⟶ ℂ ) |
4 |
3
|
ffvelrnda |
⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
5 |
2
|
cnfldtop |
⊢ 𝐾 ∈ Top |
6 |
|
simpl1 |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝑆 ⊆ ℂ ) |
7 |
|
cnex |
⊢ ℂ ∈ V |
8 |
|
ssexg |
⊢ ( ( 𝑆 ⊆ ℂ ∧ ℂ ∈ V ) → 𝑆 ∈ V ) |
9 |
6 7 8
|
sylancl |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝑆 ∈ V ) |
10 |
|
resttop |
⊢ ( ( 𝐾 ∈ Top ∧ 𝑆 ∈ V ) → ( 𝐾 ↾t 𝑆 ) ∈ Top ) |
11 |
5 9 10
|
sylancr |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝐾 ↾t 𝑆 ) ∈ Top ) |
12 |
|
simpl3 |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝐴 ⊆ 𝑆 ) |
13 |
2
|
cnfldtopon |
⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
14 |
|
resttopon |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( 𝐾 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
15 |
13 6 14
|
sylancr |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝐾 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
16 |
|
toponuni |
⊢ ( ( 𝐾 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) → 𝑆 = ∪ ( 𝐾 ↾t 𝑆 ) ) |
17 |
15 16
|
syl |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝑆 = ∪ ( 𝐾 ↾t 𝑆 ) ) |
18 |
12 17
|
sseqtrd |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝐴 ⊆ ∪ ( 𝐾 ↾t 𝑆 ) ) |
19 |
|
eqid |
⊢ ∪ ( 𝐾 ↾t 𝑆 ) = ∪ ( 𝐾 ↾t 𝑆 ) |
20 |
19
|
ntrss2 |
⊢ ( ( ( 𝐾 ↾t 𝑆 ) ∈ Top ∧ 𝐴 ⊆ ∪ ( 𝐾 ↾t 𝑆 ) ) → ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ 𝐴 ) ⊆ 𝐴 ) |
21 |
11 18 20
|
syl2anc |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ 𝐴 ) ⊆ 𝐴 ) |
22 |
|
eqid |
⊢ ( 𝐾 ↾t 𝑆 ) = ( 𝐾 ↾t 𝑆 ) |
23 |
|
eqid |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ) = ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ) |
24 |
|
simp1 |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → 𝑆 ⊆ ℂ ) |
25 |
|
simp2 |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → 𝐹 : 𝐴 ⟶ ℂ ) |
26 |
|
simp3 |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → 𝐴 ⊆ 𝑆 ) |
27 |
22 2 23 24 25 26
|
eldv |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → ( 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ↔ ( 𝐵 ∈ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ) limℂ 𝐵 ) ) ) ) |
28 |
27
|
simprbda |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝐵 ∈ ( ( int ‘ ( 𝐾 ↾t 𝑆 ) ) ‘ 𝐴 ) ) |
29 |
21 28
|
sseldd |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝐵 ∈ 𝐴 ) |
30 |
3 29
|
ffvelrnd |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝐹 ‘ 𝐵 ) ∈ ℂ ) |
31 |
30
|
adantr |
⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝐵 ) ∈ ℂ ) |
32 |
4 31
|
subcld |
⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ∈ ℂ ) |
33 |
|
ssid |
⊢ ℂ ⊆ ℂ |
34 |
33
|
a1i |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ℂ ⊆ ℂ ) |
35 |
|
txtopon |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ 𝐾 ∈ ( TopOn ‘ ℂ ) ) → ( 𝐾 ×t 𝐾 ) ∈ ( TopOn ‘ ( ℂ × ℂ ) ) ) |
36 |
13 13 35
|
mp2an |
⊢ ( 𝐾 ×t 𝐾 ) ∈ ( TopOn ‘ ( ℂ × ℂ ) ) |
37 |
36
|
toponrestid |
⊢ ( 𝐾 ×t 𝐾 ) = ( ( 𝐾 ×t 𝐾 ) ↾t ( ℂ × ℂ ) ) |
38 |
12 6
|
sstrd |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝐴 ⊆ ℂ ) |
39 |
3 38 29
|
dvlem |
⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ∈ ℂ ) |
40 |
38
|
ssdifssd |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝐴 ∖ { 𝐵 } ) ⊆ ℂ ) |
41 |
40
|
sselda |
⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → 𝑧 ∈ ℂ ) |
42 |
38 29
|
sseldd |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝐵 ∈ ℂ ) |
43 |
42
|
adantr |
⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → 𝐵 ∈ ℂ ) |
44 |
41 43
|
subcld |
⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → ( 𝑧 − 𝐵 ) ∈ ℂ ) |
45 |
27
|
simplbda |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝑦 ∈ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) ) limℂ 𝐵 ) ) |
46 |
|
limcresi |
⊢ ( ( 𝑧 ∈ 𝐴 ↦ ( 𝑧 − 𝐵 ) ) limℂ 𝐵 ) ⊆ ( ( ( 𝑧 ∈ 𝐴 ↦ ( 𝑧 − 𝐵 ) ) ↾ ( 𝐴 ∖ { 𝐵 } ) ) limℂ 𝐵 ) |
47 |
|
difss |
⊢ ( 𝐴 ∖ { 𝐵 } ) ⊆ 𝐴 |
48 |
|
resmpt |
⊢ ( ( 𝐴 ∖ { 𝐵 } ) ⊆ 𝐴 → ( ( 𝑧 ∈ 𝐴 ↦ ( 𝑧 − 𝐵 ) ) ↾ ( 𝐴 ∖ { 𝐵 } ) ) = ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( 𝑧 − 𝐵 ) ) ) |
49 |
47 48
|
ax-mp |
⊢ ( ( 𝑧 ∈ 𝐴 ↦ ( 𝑧 − 𝐵 ) ) ↾ ( 𝐴 ∖ { 𝐵 } ) ) = ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( 𝑧 − 𝐵 ) ) |
50 |
49
|
oveq1i |
⊢ ( ( ( 𝑧 ∈ 𝐴 ↦ ( 𝑧 − 𝐵 ) ) ↾ ( 𝐴 ∖ { 𝐵 } ) ) limℂ 𝐵 ) = ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( 𝑧 − 𝐵 ) ) limℂ 𝐵 ) |
51 |
46 50
|
sseqtri |
⊢ ( ( 𝑧 ∈ 𝐴 ↦ ( 𝑧 − 𝐵 ) ) limℂ 𝐵 ) ⊆ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( 𝑧 − 𝐵 ) ) limℂ 𝐵 ) |
52 |
42
|
subidd |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝐵 − 𝐵 ) = 0 ) |
53 |
2
|
subcn |
⊢ − ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) |
54 |
53
|
a1i |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → − ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) ) |
55 |
|
cncfmptid |
⊢ ( ( 𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑧 ∈ 𝐴 ↦ 𝑧 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
56 |
38 33 55
|
sylancl |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝑧 ∈ 𝐴 ↦ 𝑧 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
57 |
|
cncfmptc |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
58 |
42 38 34 57
|
syl3anc |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
59 |
2 54 56 58
|
cncfmpt2f |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝑧 ∈ 𝐴 ↦ ( 𝑧 − 𝐵 ) ) ∈ ( 𝐴 –cn→ ℂ ) ) |
60 |
|
oveq1 |
⊢ ( 𝑧 = 𝐵 → ( 𝑧 − 𝐵 ) = ( 𝐵 − 𝐵 ) ) |
61 |
59 29 60
|
cnmptlimc |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝐵 − 𝐵 ) ∈ ( ( 𝑧 ∈ 𝐴 ↦ ( 𝑧 − 𝐵 ) ) limℂ 𝐵 ) ) |
62 |
52 61
|
eqeltrrd |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 0 ∈ ( ( 𝑧 ∈ 𝐴 ↦ ( 𝑧 − 𝐵 ) ) limℂ 𝐵 ) ) |
63 |
51 62
|
sselid |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 0 ∈ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( 𝑧 − 𝐵 ) ) limℂ 𝐵 ) ) |
64 |
2
|
mulcn |
⊢ · ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) |
65 |
24 25 26
|
dvcl |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝑦 ∈ ℂ ) |
66 |
|
0cn |
⊢ 0 ∈ ℂ |
67 |
|
opelxpi |
⊢ ( ( 𝑦 ∈ ℂ ∧ 0 ∈ ℂ ) → 〈 𝑦 , 0 〉 ∈ ( ℂ × ℂ ) ) |
68 |
65 66 67
|
sylancl |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 〈 𝑦 , 0 〉 ∈ ( ℂ × ℂ ) ) |
69 |
36
|
toponunii |
⊢ ( ℂ × ℂ ) = ∪ ( 𝐾 ×t 𝐾 ) |
70 |
69
|
cncnpi |
⊢ ( ( · ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) ∧ 〈 𝑦 , 0 〉 ∈ ( ℂ × ℂ ) ) → · ∈ ( ( ( 𝐾 ×t 𝐾 ) CnP 𝐾 ) ‘ 〈 𝑦 , 0 〉 ) ) |
71 |
64 68 70
|
sylancr |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → · ∈ ( ( ( 𝐾 ×t 𝐾 ) CnP 𝐾 ) ‘ 〈 𝑦 , 0 〉 ) ) |
72 |
39 44 34 34 2 37 45 63 71
|
limccnp2 |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝑦 · 0 ) ∈ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) · ( 𝑧 − 𝐵 ) ) ) limℂ 𝐵 ) ) |
73 |
65
|
mul01d |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝑦 · 0 ) = 0 ) |
74 |
3
|
adantr |
⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → 𝐹 : 𝐴 ⟶ ℂ ) |
75 |
|
simpr |
⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) |
76 |
47 75
|
sselid |
⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → 𝑧 ∈ 𝐴 ) |
77 |
74 76
|
ffvelrnd |
⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
78 |
30
|
adantr |
⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → ( 𝐹 ‘ 𝐵 ) ∈ ℂ ) |
79 |
77 78
|
subcld |
⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ∈ ℂ ) |
80 |
|
eldifsni |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) → 𝑧 ≠ 𝐵 ) |
81 |
80
|
adantl |
⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → 𝑧 ≠ 𝐵 ) |
82 |
41 43 81
|
subne0d |
⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → ( 𝑧 − 𝐵 ) ≠ 0 ) |
83 |
79 44 82
|
divcan1d |
⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) · ( 𝑧 − 𝐵 ) ) = ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) |
84 |
83
|
mpteq2dva |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) · ( 𝑧 − 𝐵 ) ) ) = ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) ) |
85 |
84
|
oveq1d |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) / ( 𝑧 − 𝐵 ) ) · ( 𝑧 − 𝐵 ) ) ) limℂ 𝐵 ) = ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) limℂ 𝐵 ) ) |
86 |
72 73 85
|
3eltr3d |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 0 ∈ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) limℂ 𝐵 ) ) |
87 |
32
|
fmpttd |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝑧 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) : 𝐴 ⟶ ℂ ) |
88 |
87
|
limcdif |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( ( 𝑧 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) limℂ 𝐵 ) = ( ( ( 𝑧 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) ↾ ( 𝐴 ∖ { 𝐵 } ) ) limℂ 𝐵 ) ) |
89 |
|
resmpt |
⊢ ( ( 𝐴 ∖ { 𝐵 } ) ⊆ 𝐴 → ( ( 𝑧 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) ↾ ( 𝐴 ∖ { 𝐵 } ) ) = ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) ) |
90 |
47 89
|
ax-mp |
⊢ ( ( 𝑧 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) ↾ ( 𝐴 ∖ { 𝐵 } ) ) = ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) |
91 |
90
|
oveq1i |
⊢ ( ( ( 𝑧 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) ↾ ( 𝐴 ∖ { 𝐵 } ) ) limℂ 𝐵 ) = ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) limℂ 𝐵 ) |
92 |
88 91
|
eqtrdi |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( ( 𝑧 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) limℂ 𝐵 ) = ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) limℂ 𝐵 ) ) |
93 |
86 92
|
eleqtrrd |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 0 ∈ ( ( 𝑧 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) ) limℂ 𝐵 ) ) |
94 |
|
cncfmptc |
⊢ ( ( ( 𝐹 ‘ 𝐵 ) ∈ ℂ ∧ 𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑧 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∈ ( 𝐴 –cn→ ℂ ) ) |
95 |
30 38 34 94
|
syl3anc |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝑧 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∈ ( 𝐴 –cn→ ℂ ) ) |
96 |
|
eqidd |
⊢ ( 𝑧 = 𝐵 → ( 𝐹 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐵 ) ) |
97 |
95 29 96
|
cnmptlimc |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝐹 ‘ 𝐵 ) ∈ ( ( 𝑧 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) limℂ 𝐵 ) ) |
98 |
2
|
addcn |
⊢ + ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) |
99 |
|
opelxpi |
⊢ ( ( 0 ∈ ℂ ∧ ( 𝐹 ‘ 𝐵 ) ∈ ℂ ) → 〈 0 , ( 𝐹 ‘ 𝐵 ) 〉 ∈ ( ℂ × ℂ ) ) |
100 |
66 30 99
|
sylancr |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 〈 0 , ( 𝐹 ‘ 𝐵 ) 〉 ∈ ( ℂ × ℂ ) ) |
101 |
69
|
cncnpi |
⊢ ( ( + ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) ∧ 〈 0 , ( 𝐹 ‘ 𝐵 ) 〉 ∈ ( ℂ × ℂ ) ) → + ∈ ( ( ( 𝐾 ×t 𝐾 ) CnP 𝐾 ) ‘ 〈 0 , ( 𝐹 ‘ 𝐵 ) 〉 ) ) |
102 |
98 100 101
|
sylancr |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → + ∈ ( ( ( 𝐾 ×t 𝐾 ) CnP 𝐾 ) ‘ 〈 0 , ( 𝐹 ‘ 𝐵 ) 〉 ) ) |
103 |
32 31 34 34 2 37 93 97 102
|
limccnp2 |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 0 + ( 𝐹 ‘ 𝐵 ) ) ∈ ( ( 𝑧 ∈ 𝐴 ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) + ( 𝐹 ‘ 𝐵 ) ) ) limℂ 𝐵 ) ) |
104 |
30
|
addid2d |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 0 + ( 𝐹 ‘ 𝐵 ) ) = ( 𝐹 ‘ 𝐵 ) ) |
105 |
4 31
|
npcand |
⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ∧ 𝑧 ∈ 𝐴 ) → ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) + ( 𝐹 ‘ 𝐵 ) ) = ( 𝐹 ‘ 𝑧 ) ) |
106 |
105
|
mpteq2dva |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝑧 ∈ 𝐴 ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) + ( 𝐹 ‘ 𝐵 ) ) ) = ( 𝑧 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
107 |
3
|
feqmptd |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝐹 = ( 𝑧 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
108 |
106 107
|
eqtr4d |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝑧 ∈ 𝐴 ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) + ( 𝐹 ‘ 𝐵 ) ) ) = 𝐹 ) |
109 |
108
|
oveq1d |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( ( 𝑧 ∈ 𝐴 ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐵 ) ) + ( 𝐹 ‘ 𝐵 ) ) ) limℂ 𝐵 ) = ( 𝐹 limℂ 𝐵 ) ) |
110 |
103 104 109
|
3eltr3d |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝐹 ‘ 𝐵 ) ∈ ( 𝐹 limℂ 𝐵 ) ) |
111 |
2 1
|
cnplimc |
⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ↔ ( 𝐹 : 𝐴 ⟶ ℂ ∧ ( 𝐹 ‘ 𝐵 ) ∈ ( 𝐹 limℂ 𝐵 ) ) ) ) |
112 |
38 29 111
|
syl2anc |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ↔ ( 𝐹 : 𝐴 ⟶ ℂ ∧ ( 𝐹 ‘ 𝐵 ) ∈ ( 𝐹 limℂ 𝐵 ) ) ) ) |
113 |
3 110 112
|
mpbir2and |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) |
114 |
113
|
ex |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → ( 𝐵 ( 𝑆 D 𝐹 ) 𝑦 → 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) ) |
115 |
114
|
exlimdv |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) → ( ∃ 𝑦 𝐵 ( 𝑆 D 𝐹 ) 𝑦 → 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) ) |
116 |
|
eldmg |
⊢ ( 𝐵 ∈ dom ( 𝑆 D 𝐹 ) → ( 𝐵 ∈ dom ( 𝑆 D 𝐹 ) ↔ ∃ 𝑦 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) ) |
117 |
116
|
ibi |
⊢ ( 𝐵 ∈ dom ( 𝑆 D 𝐹 ) → ∃ 𝑦 𝐵 ( 𝑆 D 𝐹 ) 𝑦 ) |
118 |
115 117
|
impel |
⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ∧ 𝐵 ∈ dom ( 𝑆 D 𝐹 ) ) → 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) |