| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reelprrecn | ⊢ ℝ  ∈  { ℝ ,  ℂ } | 
						
							| 2 | 1 | a1i | ⊢ ( ( 𝐹 : ℂ ⟶ ℂ  ∧  ℝ  ⊆  dom  ( ℂ  D  𝐹 ) )  →  ℝ  ∈  { ℝ ,  ℂ } ) | 
						
							| 3 |  | simpl | ⊢ ( ( 𝐹 : ℂ ⟶ ℂ  ∧  ℝ  ⊆  dom  ( ℂ  D  𝐹 ) )  →  𝐹 : ℂ ⟶ ℂ ) | 
						
							| 4 |  | ssidd | ⊢ ( ( 𝐹 : ℂ ⟶ ℂ  ∧  ℝ  ⊆  dom  ( ℂ  D  𝐹 ) )  →  ℂ  ⊆  ℂ ) | 
						
							| 5 |  | simpr | ⊢ ( ( 𝐹 : ℂ ⟶ ℂ  ∧  ℝ  ⊆  dom  ( ℂ  D  𝐹 ) )  →  ℝ  ⊆  dom  ( ℂ  D  𝐹 ) ) | 
						
							| 6 |  | dvres3 | ⊢ ( ( ( ℝ  ∈  { ℝ ,  ℂ }  ∧  𝐹 : ℂ ⟶ ℂ )  ∧  ( ℂ  ⊆  ℂ  ∧  ℝ  ⊆  dom  ( ℂ  D  𝐹 ) ) )  →  ( ℝ  D  ( 𝐹  ↾  ℝ ) )  =  ( ( ℂ  D  𝐹 )  ↾  ℝ ) ) | 
						
							| 7 | 2 3 4 5 6 | syl22anc | ⊢ ( ( 𝐹 : ℂ ⟶ ℂ  ∧  ℝ  ⊆  dom  ( ℂ  D  𝐹 ) )  →  ( ℝ  D  ( 𝐹  ↾  ℝ ) )  =  ( ( ℂ  D  𝐹 )  ↾  ℝ ) ) |