Step |
Hyp |
Ref |
Expression |
1 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
2 |
1
|
a1i |
⊢ ( ( 𝐹 : ℂ ⟶ ℂ ∧ ℝ ⊆ dom ( ℂ D 𝐹 ) ) → ℝ ∈ { ℝ , ℂ } ) |
3 |
|
simpl |
⊢ ( ( 𝐹 : ℂ ⟶ ℂ ∧ ℝ ⊆ dom ( ℂ D 𝐹 ) ) → 𝐹 : ℂ ⟶ ℂ ) |
4 |
|
ssidd |
⊢ ( ( 𝐹 : ℂ ⟶ ℂ ∧ ℝ ⊆ dom ( ℂ D 𝐹 ) ) → ℂ ⊆ ℂ ) |
5 |
|
simpr |
⊢ ( ( 𝐹 : ℂ ⟶ ℂ ∧ ℝ ⊆ dom ( ℂ D 𝐹 ) ) → ℝ ⊆ dom ( ℂ D 𝐹 ) ) |
6 |
|
dvres3 |
⊢ ( ( ( ℝ ∈ { ℝ , ℂ } ∧ 𝐹 : ℂ ⟶ ℂ ) ∧ ( ℂ ⊆ ℂ ∧ ℝ ⊆ dom ( ℂ D 𝐹 ) ) ) → ( ℝ D ( 𝐹 ↾ ℝ ) ) = ( ( ℂ D 𝐹 ) ↾ ℝ ) ) |
7 |
2 3 4 5 6
|
syl22anc |
⊢ ( ( 𝐹 : ℂ ⟶ ℂ ∧ ℝ ⊆ dom ( ℂ D 𝐹 ) ) → ( ℝ D ( 𝐹 ↾ ℝ ) ) = ( ( ℂ D 𝐹 ) ↾ ℝ ) ) |