Step |
Hyp |
Ref |
Expression |
1 |
|
dvcnv.j |
⊢ 𝐽 = ( TopOpen ‘ ℂfld ) |
2 |
|
dvcnv.k |
⊢ 𝐾 = ( 𝐽 ↾t 𝑆 ) |
3 |
|
dvcnv.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
4 |
|
dvcnv.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐾 ) |
5 |
|
dvcnv.f |
⊢ ( 𝜑 → 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) |
6 |
|
dvcnv.i |
⊢ ( 𝜑 → ◡ 𝐹 ∈ ( 𝑌 –cn→ 𝑋 ) ) |
7 |
|
dvcnv.d |
⊢ ( 𝜑 → dom ( 𝑆 D 𝐹 ) = 𝑋 ) |
8 |
|
dvcnv.z |
⊢ ( 𝜑 → ¬ 0 ∈ ran ( 𝑆 D 𝐹 ) ) |
9 |
|
dvfg |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D ◡ 𝐹 ) : dom ( 𝑆 D ◡ 𝐹 ) ⟶ ℂ ) |
10 |
3 9
|
syl |
⊢ ( 𝜑 → ( 𝑆 D ◡ 𝐹 ) : dom ( 𝑆 D ◡ 𝐹 ) ⟶ ℂ ) |
11 |
|
recnprss |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) |
12 |
3 11
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
13 |
|
f1ocnv |
⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) |
14 |
|
f1of |
⊢ ( ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋 → ◡ 𝐹 : 𝑌 ⟶ 𝑋 ) |
15 |
5 13 14
|
3syl |
⊢ ( 𝜑 → ◡ 𝐹 : 𝑌 ⟶ 𝑋 ) |
16 |
|
dvbsss |
⊢ dom ( 𝑆 D 𝐹 ) ⊆ 𝑆 |
17 |
7 16
|
eqsstrrdi |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) |
18 |
17 12
|
sstrd |
⊢ ( 𝜑 → 𝑋 ⊆ ℂ ) |
19 |
15 18
|
fssd |
⊢ ( 𝜑 → ◡ 𝐹 : 𝑌 ⟶ ℂ ) |
20 |
1
|
cnfldtopon |
⊢ 𝐽 ∈ ( TopOn ‘ ℂ ) |
21 |
|
resttopon |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( 𝐽 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
22 |
20 12 21
|
sylancr |
⊢ ( 𝜑 → ( 𝐽 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
23 |
2 22
|
eqeltrid |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑆 ) ) |
24 |
|
toponss |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑆 ) ∧ 𝑌 ∈ 𝐾 ) → 𝑌 ⊆ 𝑆 ) |
25 |
23 4 24
|
syl2anc |
⊢ ( 𝜑 → 𝑌 ⊆ 𝑆 ) |
26 |
12 19 25
|
dvbss |
⊢ ( 𝜑 → dom ( 𝑆 D ◡ 𝐹 ) ⊆ 𝑌 ) |
27 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ 𝑥 ∈ 𝑌 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) = 𝑥 ) |
28 |
5 27
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) = 𝑥 ) |
29 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑆 ∈ { ℝ , ℂ } ) |
30 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑌 ∈ 𝐾 ) |
31 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) |
32 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ◡ 𝐹 ∈ ( 𝑌 –cn→ 𝑋 ) ) |
33 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → dom ( 𝑆 D 𝐹 ) = 𝑋 ) |
34 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ¬ 0 ∈ ran ( 𝑆 D 𝐹 ) ) |
35 |
15
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ◡ 𝐹 ‘ 𝑥 ) ∈ 𝑋 ) |
36 |
1 2 29 30 31 32 33 34 35
|
dvcnvlem |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ( 𝑆 D ◡ 𝐹 ) ( 1 / ( ( 𝑆 D 𝐹 ) ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ) ) |
37 |
28 36
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ( 𝑆 D ◡ 𝐹 ) ( 1 / ( ( 𝑆 D 𝐹 ) ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ) ) |
38 |
|
reldv |
⊢ Rel ( 𝑆 D ◡ 𝐹 ) |
39 |
38
|
releldmi |
⊢ ( 𝑥 ( 𝑆 D ◡ 𝐹 ) ( 1 / ( ( 𝑆 D 𝐹 ) ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ) → 𝑥 ∈ dom ( 𝑆 D ◡ 𝐹 ) ) |
40 |
37 39
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ∈ dom ( 𝑆 D ◡ 𝐹 ) ) |
41 |
26 40
|
eqelssd |
⊢ ( 𝜑 → dom ( 𝑆 D ◡ 𝐹 ) = 𝑌 ) |
42 |
41
|
feq2d |
⊢ ( 𝜑 → ( ( 𝑆 D ◡ 𝐹 ) : dom ( 𝑆 D ◡ 𝐹 ) ⟶ ℂ ↔ ( 𝑆 D ◡ 𝐹 ) : 𝑌 ⟶ ℂ ) ) |
43 |
10 42
|
mpbid |
⊢ ( 𝜑 → ( 𝑆 D ◡ 𝐹 ) : 𝑌 ⟶ ℂ ) |
44 |
43
|
feqmptd |
⊢ ( 𝜑 → ( 𝑆 D ◡ 𝐹 ) = ( 𝑥 ∈ 𝑌 ↦ ( ( 𝑆 D ◡ 𝐹 ) ‘ 𝑥 ) ) ) |
45 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝑆 D ◡ 𝐹 ) : dom ( 𝑆 D ◡ 𝐹 ) ⟶ ℂ ) |
46 |
45
|
ffund |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → Fun ( 𝑆 D ◡ 𝐹 ) ) |
47 |
|
funbrfv |
⊢ ( Fun ( 𝑆 D ◡ 𝐹 ) → ( 𝑥 ( 𝑆 D ◡ 𝐹 ) ( 1 / ( ( 𝑆 D 𝐹 ) ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ) → ( ( 𝑆 D ◡ 𝐹 ) ‘ 𝑥 ) = ( 1 / ( ( 𝑆 D 𝐹 ) ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ) ) ) |
48 |
46 37 47
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( 𝑆 D ◡ 𝐹 ) ‘ 𝑥 ) = ( 1 / ( ( 𝑆 D 𝐹 ) ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ) ) |
49 |
48
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑌 ↦ ( ( 𝑆 D ◡ 𝐹 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑌 ↦ ( 1 / ( ( 𝑆 D 𝐹 ) ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ) ) ) |
50 |
44 49
|
eqtrd |
⊢ ( 𝜑 → ( 𝑆 D ◡ 𝐹 ) = ( 𝑥 ∈ 𝑌 ↦ ( 1 / ( ( 𝑆 D 𝐹 ) ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ) ) ) |