Step |
Hyp |
Ref |
Expression |
1 |
|
dvcnv.j |
⊢ 𝐽 = ( TopOpen ‘ ℂfld ) |
2 |
|
dvcnv.k |
⊢ 𝐾 = ( 𝐽 ↾t 𝑆 ) |
3 |
|
dvcnv.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
4 |
|
dvcnv.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐾 ) |
5 |
|
dvcnv.f |
⊢ ( 𝜑 → 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) |
6 |
|
dvcnv.i |
⊢ ( 𝜑 → ◡ 𝐹 ∈ ( 𝑌 –cn→ 𝑋 ) ) |
7 |
|
dvcnv.d |
⊢ ( 𝜑 → dom ( 𝑆 D 𝐹 ) = 𝑋 ) |
8 |
|
dvcnv.z |
⊢ ( 𝜑 → ¬ 0 ∈ ran ( 𝑆 D 𝐹 ) ) |
9 |
|
dvcnv.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) |
10 |
|
f1of |
⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → 𝐹 : 𝑋 ⟶ 𝑌 ) |
11 |
5 10
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝑌 ) |
12 |
11 9
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ 𝑌 ) |
13 |
1
|
cnfldtopon |
⊢ 𝐽 ∈ ( TopOn ‘ ℂ ) |
14 |
|
recnprss |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) |
15 |
3 14
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
16 |
|
resttopon |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( 𝐽 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
17 |
13 15 16
|
sylancr |
⊢ ( 𝜑 → ( 𝐽 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
18 |
2 17
|
eqeltrid |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑆 ) ) |
19 |
|
topontop |
⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑆 ) → 𝐾 ∈ Top ) |
20 |
18 19
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Top ) |
21 |
|
isopn3i |
⊢ ( ( 𝐾 ∈ Top ∧ 𝑌 ∈ 𝐾 ) → ( ( int ‘ 𝐾 ) ‘ 𝑌 ) = 𝑌 ) |
22 |
20 4 21
|
syl2anc |
⊢ ( 𝜑 → ( ( int ‘ 𝐾 ) ‘ 𝑌 ) = 𝑌 ) |
23 |
12 22
|
eleqtrrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ ( ( int ‘ 𝐾 ) ‘ 𝑌 ) ) |
24 |
|
f1ocnv |
⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) |
25 |
|
f1of |
⊢ ( ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋 → ◡ 𝐹 : 𝑌 ⟶ 𝑋 ) |
26 |
5 24 25
|
3syl |
⊢ ( 𝜑 → ◡ 𝐹 : 𝑌 ⟶ 𝑋 ) |
27 |
|
eldifi |
⊢ ( 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) → 𝑧 ∈ 𝑌 ) |
28 |
|
ffvelrn |
⊢ ( ( ◡ 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝑧 ∈ 𝑌 ) → ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑋 ) |
29 |
26 27 28
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ) → ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑋 ) |
30 |
29
|
anim1i |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ) ∧ ( ◡ 𝐹 ‘ 𝑧 ) ≠ 𝐶 ) → ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑋 ∧ ( ◡ 𝐹 ‘ 𝑧 ) ≠ 𝐶 ) ) |
31 |
|
eldifsn |
⊢ ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ ( 𝑋 ∖ { 𝐶 } ) ↔ ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑋 ∧ ( ◡ 𝐹 ‘ 𝑧 ) ≠ 𝐶 ) ) |
32 |
30 31
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ) ∧ ( ◡ 𝐹 ‘ 𝑧 ) ≠ 𝐶 ) → ( ◡ 𝐹 ‘ 𝑧 ) ∈ ( 𝑋 ∖ { 𝐶 } ) ) |
33 |
32
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ∧ ( ◡ 𝐹 ‘ 𝑧 ) ≠ 𝐶 ) ) → ( ◡ 𝐹 ‘ 𝑧 ) ∈ ( 𝑋 ∖ { 𝐶 } ) ) |
34 |
|
eldifi |
⊢ ( 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) → 𝑦 ∈ 𝑋 ) |
35 |
|
dvbsss |
⊢ dom ( 𝑆 D 𝐹 ) ⊆ 𝑆 |
36 |
7 35
|
eqsstrrdi |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) |
37 |
36 15
|
sstrd |
⊢ ( 𝜑 → 𝑋 ⊆ ℂ ) |
38 |
37
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → 𝑦 ∈ ℂ ) |
39 |
34 38
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → 𝑦 ∈ ℂ ) |
40 |
36 9
|
sseldd |
⊢ ( 𝜑 → 𝐶 ∈ 𝑆 ) |
41 |
15 40
|
sseldd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
42 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → 𝐶 ∈ ℂ ) |
43 |
39 42
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( 𝑦 − 𝐶 ) ∈ ℂ ) |
44 |
|
toponss |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑆 ) ∧ 𝑌 ∈ 𝐾 ) → 𝑌 ⊆ 𝑆 ) |
45 |
18 4 44
|
syl2anc |
⊢ ( 𝜑 → 𝑌 ⊆ 𝑆 ) |
46 |
45 15
|
sstrd |
⊢ ( 𝜑 → 𝑌 ⊆ ℂ ) |
47 |
11 46
|
fssd |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) |
48 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
49 |
47 34 48
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
50 |
46 12
|
sseldd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ ℂ ) |
51 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( 𝐹 ‘ 𝐶 ) ∈ ℂ ) |
52 |
49 51
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ∈ ℂ ) |
53 |
|
eldifsni |
⊢ ( 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) → 𝑦 ≠ 𝐶 ) |
54 |
53
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → 𝑦 ≠ 𝐶 ) |
55 |
49 51
|
subeq0ad |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) = 0 ↔ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐶 ) ) ) |
56 |
|
f1of1 |
⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → 𝐹 : 𝑋 –1-1→ 𝑌 ) |
57 |
5 56
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑋 –1-1→ 𝑌 ) |
58 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → 𝐹 : 𝑋 –1-1→ 𝑌 ) |
59 |
34
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → 𝑦 ∈ 𝑋 ) |
60 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → 𝐶 ∈ 𝑋 ) |
61 |
|
f1fveq |
⊢ ( ( 𝐹 : 𝑋 –1-1→ 𝑌 ∧ ( 𝑦 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐶 ) ↔ 𝑦 = 𝐶 ) ) |
62 |
58 59 60 61
|
syl12anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐶 ) ↔ 𝑦 = 𝐶 ) ) |
63 |
55 62
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) = 0 ↔ 𝑦 = 𝐶 ) ) |
64 |
63
|
necon3bid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ≠ 0 ↔ 𝑦 ≠ 𝐶 ) ) |
65 |
54 64
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ≠ 0 ) |
66 |
43 52 65
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( ( 𝑦 − 𝐶 ) / ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) ∈ ℂ ) |
67 |
|
limcresi |
⊢ ( ◡ 𝐹 limℂ ( 𝐹 ‘ 𝐶 ) ) ⊆ ( ( ◡ 𝐹 ↾ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ) limℂ ( 𝐹 ‘ 𝐶 ) ) |
68 |
26
|
feqmptd |
⊢ ( 𝜑 → ◡ 𝐹 = ( 𝑧 ∈ 𝑌 ↦ ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
69 |
68
|
reseq1d |
⊢ ( 𝜑 → ( ◡ 𝐹 ↾ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ) = ( ( 𝑧 ∈ 𝑌 ↦ ( ◡ 𝐹 ‘ 𝑧 ) ) ↾ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ) ) |
70 |
|
difss |
⊢ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ⊆ 𝑌 |
71 |
|
resmpt |
⊢ ( ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ⊆ 𝑌 → ( ( 𝑧 ∈ 𝑌 ↦ ( ◡ 𝐹 ‘ 𝑧 ) ) ↾ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ) = ( 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ↦ ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
72 |
70 71
|
ax-mp |
⊢ ( ( 𝑧 ∈ 𝑌 ↦ ( ◡ 𝐹 ‘ 𝑧 ) ) ↾ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ) = ( 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ↦ ( ◡ 𝐹 ‘ 𝑧 ) ) |
73 |
69 72
|
eqtrdi |
⊢ ( 𝜑 → ( ◡ 𝐹 ↾ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ) = ( 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ↦ ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
74 |
73
|
oveq1d |
⊢ ( 𝜑 → ( ( ◡ 𝐹 ↾ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ) limℂ ( 𝐹 ‘ 𝐶 ) ) = ( ( 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ↦ ( ◡ 𝐹 ‘ 𝑧 ) ) limℂ ( 𝐹 ‘ 𝐶 ) ) ) |
75 |
67 74
|
sseqtrid |
⊢ ( 𝜑 → ( ◡ 𝐹 limℂ ( 𝐹 ‘ 𝐶 ) ) ⊆ ( ( 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ↦ ( ◡ 𝐹 ‘ 𝑧 ) ) limℂ ( 𝐹 ‘ 𝐶 ) ) ) |
76 |
|
f1ocnvfv1 |
⊢ ( ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ 𝐶 ∈ 𝑋 ) → ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝐶 ) ) = 𝐶 ) |
77 |
5 9 76
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝐶 ) ) = 𝐶 ) |
78 |
6 12
|
cnlimci |
⊢ ( 𝜑 → ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝐶 ) ) ∈ ( ◡ 𝐹 limℂ ( 𝐹 ‘ 𝐶 ) ) ) |
79 |
77 78
|
eqeltrrd |
⊢ ( 𝜑 → 𝐶 ∈ ( ◡ 𝐹 limℂ ( 𝐹 ‘ 𝐶 ) ) ) |
80 |
75 79
|
sseldd |
⊢ ( 𝜑 → 𝐶 ∈ ( ( 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ↦ ( ◡ 𝐹 ‘ 𝑧 ) ) limℂ ( 𝐹 ‘ 𝐶 ) ) ) |
81 |
47 37 9
|
dvlem |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑦 − 𝐶 ) ) ∈ ℂ ) |
82 |
39 42 54
|
subne0d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( 𝑦 − 𝐶 ) ≠ 0 ) |
83 |
52 43 65 82
|
divne0d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑦 − 𝐶 ) ) ≠ 0 ) |
84 |
|
eldifsn |
⊢ ( ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑦 − 𝐶 ) ) ∈ ( ℂ ∖ { 0 } ) ↔ ( ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑦 − 𝐶 ) ) ∈ ℂ ∧ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑦 − 𝐶 ) ) ≠ 0 ) ) |
85 |
81 83 84
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑦 − 𝐶 ) ) ∈ ( ℂ ∖ { 0 } ) ) |
86 |
85
|
fmpttd |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑦 − 𝐶 ) ) ) : ( 𝑋 ∖ { 𝐶 } ) ⟶ ( ℂ ∖ { 0 } ) ) |
87 |
|
difss |
⊢ ( ℂ ∖ { 0 } ) ⊆ ℂ |
88 |
87
|
a1i |
⊢ ( 𝜑 → ( ℂ ∖ { 0 } ) ⊆ ℂ ) |
89 |
|
eqid |
⊢ ( 𝐽 ↾t ( ℂ ∖ { 0 } ) ) = ( 𝐽 ↾t ( ℂ ∖ { 0 } ) ) |
90 |
9 7
|
eleqtrrd |
⊢ ( 𝜑 → 𝐶 ∈ dom ( 𝑆 D 𝐹 ) ) |
91 |
|
dvfg |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) |
92 |
|
ffun |
⊢ ( ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ → Fun ( 𝑆 D 𝐹 ) ) |
93 |
|
funfvbrb |
⊢ ( Fun ( 𝑆 D 𝐹 ) → ( 𝐶 ∈ dom ( 𝑆 D 𝐹 ) ↔ 𝐶 ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ) |
94 |
3 91 92 93
|
4syl |
⊢ ( 𝜑 → ( 𝐶 ∈ dom ( 𝑆 D 𝐹 ) ↔ 𝐶 ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ) |
95 |
90 94
|
mpbid |
⊢ ( 𝜑 → 𝐶 ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) |
96 |
|
eqid |
⊢ ( 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑦 − 𝐶 ) ) ) = ( 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑦 − 𝐶 ) ) ) |
97 |
2 1 96 15 47 36
|
eldv |
⊢ ( 𝜑 → ( 𝐶 ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ↔ ( 𝐶 ∈ ( ( int ‘ 𝐾 ) ‘ 𝑋 ) ∧ ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ∈ ( ( 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑦 − 𝐶 ) ) ) limℂ 𝐶 ) ) ) ) |
98 |
95 97
|
mpbid |
⊢ ( 𝜑 → ( 𝐶 ∈ ( ( int ‘ 𝐾 ) ‘ 𝑋 ) ∧ ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ∈ ( ( 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑦 − 𝐶 ) ) ) limℂ 𝐶 ) ) ) |
99 |
98
|
simprd |
⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ∈ ( ( 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑦 − 𝐶 ) ) ) limℂ 𝐶 ) ) |
100 |
|
resttopon |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ ( ℂ ∖ { 0 } ) ⊆ ℂ ) → ( 𝐽 ↾t ( ℂ ∖ { 0 } ) ) ∈ ( TopOn ‘ ( ℂ ∖ { 0 } ) ) ) |
101 |
13 87 100
|
mp2an |
⊢ ( 𝐽 ↾t ( ℂ ∖ { 0 } ) ) ∈ ( TopOn ‘ ( ℂ ∖ { 0 } ) ) |
102 |
101
|
a1i |
⊢ ( 𝜑 → ( 𝐽 ↾t ( ℂ ∖ { 0 } ) ) ∈ ( TopOn ‘ ( ℂ ∖ { 0 } ) ) ) |
103 |
13
|
a1i |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ ℂ ) ) |
104 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
105 |
102 103 104
|
cnmptc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ 1 ) ∈ ( ( 𝐽 ↾t ( ℂ ∖ { 0 } ) ) Cn 𝐽 ) ) |
106 |
102
|
cnmptid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ 𝑥 ) ∈ ( ( 𝐽 ↾t ( ℂ ∖ { 0 } ) ) Cn ( 𝐽 ↾t ( ℂ ∖ { 0 } ) ) ) ) |
107 |
1 89
|
divcn |
⊢ / ∈ ( ( 𝐽 ×t ( 𝐽 ↾t ( ℂ ∖ { 0 } ) ) ) Cn 𝐽 ) |
108 |
107
|
a1i |
⊢ ( 𝜑 → / ∈ ( ( 𝐽 ×t ( 𝐽 ↾t ( ℂ ∖ { 0 } ) ) ) Cn 𝐽 ) ) |
109 |
102 105 106 108
|
cnmpt12f |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑥 ) ) ∈ ( ( 𝐽 ↾t ( ℂ ∖ { 0 } ) ) Cn 𝐽 ) ) |
110 |
3 91
|
syl |
⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) |
111 |
7
|
feq2d |
⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ↔ ( 𝑆 D 𝐹 ) : 𝑋 ⟶ ℂ ) ) |
112 |
110 111
|
mpbid |
⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) : 𝑋 ⟶ ℂ ) |
113 |
112 9
|
ffvelrnd |
⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ∈ ℂ ) |
114 |
110
|
ffnd |
⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) Fn dom ( 𝑆 D 𝐹 ) ) |
115 |
|
fnfvelrn |
⊢ ( ( ( 𝑆 D 𝐹 ) Fn dom ( 𝑆 D 𝐹 ) ∧ 𝐶 ∈ dom ( 𝑆 D 𝐹 ) ) → ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ∈ ran ( 𝑆 D 𝐹 ) ) |
116 |
114 90 115
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ∈ ran ( 𝑆 D 𝐹 ) ) |
117 |
|
nelne2 |
⊢ ( ( ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ∈ ran ( 𝑆 D 𝐹 ) ∧ ¬ 0 ∈ ran ( 𝑆 D 𝐹 ) ) → ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ≠ 0 ) |
118 |
116 8 117
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ≠ 0 ) |
119 |
|
eldifsn |
⊢ ( ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ∈ ( ℂ ∖ { 0 } ) ↔ ( ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ∈ ℂ ∧ ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ≠ 0 ) ) |
120 |
113 118 119
|
sylanbrc |
⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ∈ ( ℂ ∖ { 0 } ) ) |
121 |
101
|
toponunii |
⊢ ( ℂ ∖ { 0 } ) = ∪ ( 𝐽 ↾t ( ℂ ∖ { 0 } ) ) |
122 |
121
|
cncnpi |
⊢ ( ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑥 ) ) ∈ ( ( 𝐽 ↾t ( ℂ ∖ { 0 } ) ) Cn 𝐽 ) ∧ ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑥 ) ) ∈ ( ( ( 𝐽 ↾t ( ℂ ∖ { 0 } ) ) CnP 𝐽 ) ‘ ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ) |
123 |
109 120 122
|
syl2anc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑥 ) ) ∈ ( ( ( 𝐽 ↾t ( ℂ ∖ { 0 } ) ) CnP 𝐽 ) ‘ ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ) |
124 |
86 88 1 89 99 123
|
limccnp |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑥 ) ) ‘ ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ∈ ( ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑥 ) ) ∘ ( 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑦 − 𝐶 ) ) ) ) limℂ 𝐶 ) ) |
125 |
|
oveq2 |
⊢ ( 𝑥 = ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) → ( 1 / 𝑥 ) = ( 1 / ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ) |
126 |
|
eqid |
⊢ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑥 ) ) = ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑥 ) ) |
127 |
|
ovex |
⊢ ( 1 / ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ∈ V |
128 |
125 126 127
|
fvmpt |
⊢ ( ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ∈ ( ℂ ∖ { 0 } ) → ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑥 ) ) ‘ ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) = ( 1 / ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ) |
129 |
120 128
|
syl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑥 ) ) ‘ ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) = ( 1 / ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ) |
130 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑦 − 𝐶 ) ) ) = ( 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑦 − 𝐶 ) ) ) ) |
131 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑥 ) ) = ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑥 ) ) ) |
132 |
|
oveq2 |
⊢ ( 𝑥 = ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑦 − 𝐶 ) ) → ( 1 / 𝑥 ) = ( 1 / ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑦 − 𝐶 ) ) ) ) |
133 |
85 130 131 132
|
fmptco |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑥 ) ) ∘ ( 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑦 − 𝐶 ) ) ) ) = ( 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( 1 / ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑦 − 𝐶 ) ) ) ) ) |
134 |
52 43 65 82
|
recdivd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( 1 / ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑦 − 𝐶 ) ) ) = ( ( 𝑦 − 𝐶 ) / ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) ) |
135 |
134
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( 1 / ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑦 − 𝐶 ) ) ) ) = ( 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( 𝑦 − 𝐶 ) / ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) ) ) |
136 |
133 135
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑥 ) ) ∘ ( 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑦 − 𝐶 ) ) ) ) = ( 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( 𝑦 − 𝐶 ) / ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) ) ) |
137 |
136
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑥 ) ) ∘ ( 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑦 − 𝐶 ) ) ) ) limℂ 𝐶 ) = ( ( 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( 𝑦 − 𝐶 ) / ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) ) limℂ 𝐶 ) ) |
138 |
124 129 137
|
3eltr3d |
⊢ ( 𝜑 → ( 1 / ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ∈ ( ( 𝑦 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( 𝑦 − 𝐶 ) / ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) ) limℂ 𝐶 ) ) |
139 |
|
oveq1 |
⊢ ( 𝑦 = ( ◡ 𝐹 ‘ 𝑧 ) → ( 𝑦 − 𝐶 ) = ( ( ◡ 𝐹 ‘ 𝑧 ) − 𝐶 ) ) |
140 |
|
fveq2 |
⊢ ( 𝑦 = ( ◡ 𝐹 ‘ 𝑧 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
141 |
140
|
oveq1d |
⊢ ( 𝑦 = ( ◡ 𝐹 ‘ 𝑧 ) → ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) = ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) |
142 |
139 141
|
oveq12d |
⊢ ( 𝑦 = ( ◡ 𝐹 ‘ 𝑧 ) → ( ( 𝑦 − 𝐶 ) / ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) = ( ( ( ◡ 𝐹 ‘ 𝑧 ) − 𝐶 ) / ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) ) |
143 |
|
eldifsni |
⊢ ( 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) → 𝑧 ≠ ( 𝐹 ‘ 𝐶 ) ) |
144 |
143
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ) → 𝑧 ≠ ( 𝐹 ‘ 𝐶 ) ) |
145 |
144
|
necomd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ) → ( 𝐹 ‘ 𝐶 ) ≠ 𝑧 ) |
146 |
|
f1ocnvfvb |
⊢ ( ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ 𝐶 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) → ( ( 𝐹 ‘ 𝐶 ) = 𝑧 ↔ ( ◡ 𝐹 ‘ 𝑧 ) = 𝐶 ) ) |
147 |
5 9 27 146
|
syl2an3an |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ) → ( ( 𝐹 ‘ 𝐶 ) = 𝑧 ↔ ( ◡ 𝐹 ‘ 𝑧 ) = 𝐶 ) ) |
148 |
147
|
necon3abid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ) → ( ( 𝐹 ‘ 𝐶 ) ≠ 𝑧 ↔ ¬ ( ◡ 𝐹 ‘ 𝑧 ) = 𝐶 ) ) |
149 |
145 148
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ) → ¬ ( ◡ 𝐹 ‘ 𝑧 ) = 𝐶 ) |
150 |
149
|
pm2.21d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ) → ( ( ◡ 𝐹 ‘ 𝑧 ) = 𝐶 → ( ( ( ◡ 𝐹 ‘ 𝑧 ) − 𝐶 ) / ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) = ( 1 / ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ) ) |
151 |
150
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ∧ ( ◡ 𝐹 ‘ 𝑧 ) = 𝐶 ) ) → ( ( ( ◡ 𝐹 ‘ 𝑧 ) − 𝐶 ) / ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) = ( 1 / ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ) |
152 |
33 66 80 138 142 151
|
limcco |
⊢ ( 𝜑 → ( 1 / ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ∈ ( ( 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ↦ ( ( ( ◡ 𝐹 ‘ 𝑧 ) − 𝐶 ) / ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) ) limℂ ( 𝐹 ‘ 𝐶 ) ) ) |
153 |
77
|
eqcomd |
⊢ ( 𝜑 → 𝐶 = ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝐶 ) ) ) |
154 |
153
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ) → 𝐶 = ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝐶 ) ) ) |
155 |
154
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ) → ( ( ◡ 𝐹 ‘ 𝑧 ) − 𝐶 ) = ( ( ◡ 𝐹 ‘ 𝑧 ) − ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝐶 ) ) ) ) |
156 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ 𝑧 ∈ 𝑌 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) = 𝑧 ) |
157 |
5 27 156
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) = 𝑧 ) |
158 |
157
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ) → ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) − ( 𝐹 ‘ 𝐶 ) ) = ( 𝑧 − ( 𝐹 ‘ 𝐶 ) ) ) |
159 |
155 158
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ) → ( ( ( ◡ 𝐹 ‘ 𝑧 ) − 𝐶 ) / ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) = ( ( ( ◡ 𝐹 ‘ 𝑧 ) − ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝐶 ) ) ) / ( 𝑧 − ( 𝐹 ‘ 𝐶 ) ) ) ) |
160 |
159
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ↦ ( ( ( ◡ 𝐹 ‘ 𝑧 ) − 𝐶 ) / ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) ) = ( 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ↦ ( ( ( ◡ 𝐹 ‘ 𝑧 ) − ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝐶 ) ) ) / ( 𝑧 − ( 𝐹 ‘ 𝐶 ) ) ) ) ) |
161 |
160
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ↦ ( ( ( ◡ 𝐹 ‘ 𝑧 ) − 𝐶 ) / ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) ) limℂ ( 𝐹 ‘ 𝐶 ) ) = ( ( 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ↦ ( ( ( ◡ 𝐹 ‘ 𝑧 ) − ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝐶 ) ) ) / ( 𝑧 − ( 𝐹 ‘ 𝐶 ) ) ) ) limℂ ( 𝐹 ‘ 𝐶 ) ) ) |
162 |
152 161
|
eleqtrd |
⊢ ( 𝜑 → ( 1 / ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ∈ ( ( 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ↦ ( ( ( ◡ 𝐹 ‘ 𝑧 ) − ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝐶 ) ) ) / ( 𝑧 − ( 𝐹 ‘ 𝐶 ) ) ) ) limℂ ( 𝐹 ‘ 𝐶 ) ) ) |
163 |
|
eqid |
⊢ ( 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ↦ ( ( ( ◡ 𝐹 ‘ 𝑧 ) − ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝐶 ) ) ) / ( 𝑧 − ( 𝐹 ‘ 𝐶 ) ) ) ) = ( 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ↦ ( ( ( ◡ 𝐹 ‘ 𝑧 ) − ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝐶 ) ) ) / ( 𝑧 − ( 𝐹 ‘ 𝐶 ) ) ) ) |
164 |
26 37
|
fssd |
⊢ ( 𝜑 → ◡ 𝐹 : 𝑌 ⟶ ℂ ) |
165 |
2 1 163 15 164 45
|
eldv |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐶 ) ( 𝑆 D ◡ 𝐹 ) ( 1 / ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ↔ ( ( 𝐹 ‘ 𝐶 ) ∈ ( ( int ‘ 𝐾 ) ‘ 𝑌 ) ∧ ( 1 / ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ∈ ( ( 𝑧 ∈ ( 𝑌 ∖ { ( 𝐹 ‘ 𝐶 ) } ) ↦ ( ( ( ◡ 𝐹 ‘ 𝑧 ) − ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝐶 ) ) ) / ( 𝑧 − ( 𝐹 ‘ 𝐶 ) ) ) ) limℂ ( 𝐹 ‘ 𝐶 ) ) ) ) ) |
166 |
23 162 165
|
mpbir2and |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ( 𝑆 D ◡ 𝐹 ) ( 1 / ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ) |