Step |
Hyp |
Ref |
Expression |
1 |
|
dvcnvre.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 –cn→ ℝ ) ) |
2 |
|
dvcnvre.d |
⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = 𝑋 ) |
3 |
|
dvcnvre.z |
⊢ ( 𝜑 → ¬ 0 ∈ ran ( ℝ D 𝐹 ) ) |
4 |
|
dvcnvre.1 |
⊢ ( 𝜑 → 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) |
5 |
|
dvcnvre.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) |
6 |
|
dvcnvre.r |
⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) |
7 |
|
dvcnvre.s |
⊢ ( 𝜑 → ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ⊆ 𝑋 ) |
8 |
|
dvcnvre.t |
⊢ 𝑇 = ( topGen ‘ ran (,) ) |
9 |
|
dvcnvre.j |
⊢ 𝐽 = ( TopOpen ‘ ℂfld ) |
10 |
|
dvcnvre.m |
⊢ 𝑀 = ( 𝐽 ↾t 𝑋 ) |
11 |
|
dvcnvre.n |
⊢ 𝑁 = ( 𝐽 ↾t 𝑌 ) |
12 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
13 |
8 12
|
eqeltri |
⊢ 𝑇 ∈ Top |
14 |
|
f1ofo |
⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → 𝐹 : 𝑋 –onto→ 𝑌 ) |
15 |
|
forn |
⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → ran 𝐹 = 𝑌 ) |
16 |
4 14 15
|
3syl |
⊢ ( 𝜑 → ran 𝐹 = 𝑌 ) |
17 |
|
cncff |
⊢ ( 𝐹 ∈ ( 𝑋 –cn→ ℝ ) → 𝐹 : 𝑋 ⟶ ℝ ) |
18 |
|
frn |
⊢ ( 𝐹 : 𝑋 ⟶ ℝ → ran 𝐹 ⊆ ℝ ) |
19 |
1 17 18
|
3syl |
⊢ ( 𝜑 → ran 𝐹 ⊆ ℝ ) |
20 |
16 19
|
eqsstrrd |
⊢ ( 𝜑 → 𝑌 ⊆ ℝ ) |
21 |
|
imassrn |
⊢ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ⊆ ran 𝐹 |
22 |
21 16
|
sseqtrid |
⊢ ( 𝜑 → ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ⊆ 𝑌 ) |
23 |
|
uniretop |
⊢ ℝ = ∪ ( topGen ‘ ran (,) ) |
24 |
8
|
unieqi |
⊢ ∪ 𝑇 = ∪ ( topGen ‘ ran (,) ) |
25 |
23 24
|
eqtr4i |
⊢ ℝ = ∪ 𝑇 |
26 |
25
|
ntrss |
⊢ ( ( 𝑇 ∈ Top ∧ 𝑌 ⊆ ℝ ∧ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ⊆ 𝑌 ) → ( ( int ‘ 𝑇 ) ‘ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ⊆ ( ( int ‘ 𝑇 ) ‘ 𝑌 ) ) |
27 |
13 20 22 26
|
mp3an2i |
⊢ ( 𝜑 → ( ( int ‘ 𝑇 ) ‘ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ⊆ ( ( int ‘ 𝑇 ) ‘ 𝑌 ) ) |
28 |
1 2 3 4 5 6 7
|
dvcnvrelem1 |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) |
29 |
8
|
fveq2i |
⊢ ( int ‘ 𝑇 ) = ( int ‘ ( topGen ‘ ran (,) ) ) |
30 |
29
|
fveq1i |
⊢ ( ( int ‘ 𝑇 ) ‘ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) = ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) |
31 |
28 30
|
eleqtrrdi |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) |
32 |
27 31
|
sseldd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ ( ( int ‘ 𝑇 ) ‘ 𝑌 ) ) |
33 |
|
f1ocnv |
⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) |
34 |
|
f1of |
⊢ ( ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋 → ◡ 𝐹 : 𝑌 ⟶ 𝑋 ) |
35 |
4 33 34
|
3syl |
⊢ ( 𝜑 → ◡ 𝐹 : 𝑌 ⟶ 𝑋 ) |
36 |
|
ffun |
⊢ ( ◡ 𝐹 : 𝑌 ⟶ 𝑋 → Fun ◡ 𝐹 ) |
37 |
|
funcnvres |
⊢ ( Fun ◡ 𝐹 → ◡ ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( ◡ 𝐹 ↾ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) |
38 |
35 36 37
|
3syl |
⊢ ( 𝜑 → ◡ ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( ◡ 𝐹 ↾ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) |
39 |
|
dvbsss |
⊢ dom ( ℝ D 𝐹 ) ⊆ ℝ |
40 |
2 39
|
eqsstrrdi |
⊢ ( 𝜑 → 𝑋 ⊆ ℝ ) |
41 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
42 |
40 41
|
sstrdi |
⊢ ( 𝜑 → 𝑋 ⊆ ℂ ) |
43 |
|
cncfss |
⊢ ( ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ⊆ 𝑋 ∧ 𝑋 ⊆ ℂ ) → ( ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) –cn→ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ⊆ ( ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) –cn→ 𝑋 ) ) |
44 |
7 42 43
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) –cn→ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ⊆ ( ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) –cn→ 𝑋 ) ) |
45 |
|
f1of1 |
⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → 𝐹 : 𝑋 –1-1→ 𝑌 ) |
46 |
4 45
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑋 –1-1→ 𝑌 ) |
47 |
|
f1ores |
⊢ ( ( 𝐹 : 𝑋 –1-1→ 𝑌 ∧ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ⊆ 𝑋 ) → ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) : ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) –1-1-onto→ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) |
48 |
46 7 47
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) : ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) –1-1-onto→ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) |
49 |
9
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( 𝐽 ↾t ℝ ) |
50 |
8 49
|
eqtri |
⊢ 𝑇 = ( 𝐽 ↾t ℝ ) |
51 |
50
|
oveq1i |
⊢ ( 𝑇 ↾t ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( ( 𝐽 ↾t ℝ ) ↾t ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) |
52 |
9
|
cnfldtop |
⊢ 𝐽 ∈ Top |
53 |
7 40
|
sstrd |
⊢ ( 𝜑 → ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ⊆ ℝ ) |
54 |
|
reex |
⊢ ℝ ∈ V |
55 |
54
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
56 |
|
restabs |
⊢ ( ( 𝐽 ∈ Top ∧ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ⊆ ℝ ∧ ℝ ∈ V ) → ( ( 𝐽 ↾t ℝ ) ↾t ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝐽 ↾t ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) |
57 |
52 53 55 56
|
mp3an2i |
⊢ ( 𝜑 → ( ( 𝐽 ↾t ℝ ) ↾t ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝐽 ↾t ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) |
58 |
51 57
|
syl5eq |
⊢ ( 𝜑 → ( 𝑇 ↾t ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝐽 ↾t ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) |
59 |
40 5
|
sseldd |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
60 |
6
|
rpred |
⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
61 |
59 60
|
resubcld |
⊢ ( 𝜑 → ( 𝐶 − 𝑅 ) ∈ ℝ ) |
62 |
59 60
|
readdcld |
⊢ ( 𝜑 → ( 𝐶 + 𝑅 ) ∈ ℝ ) |
63 |
|
eqid |
⊢ ( 𝑇 ↾t ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑇 ↾t ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) |
64 |
8 63
|
icccmp |
⊢ ( ( ( 𝐶 − 𝑅 ) ∈ ℝ ∧ ( 𝐶 + 𝑅 ) ∈ ℝ ) → ( 𝑇 ↾t ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∈ Comp ) |
65 |
61 62 64
|
syl2anc |
⊢ ( 𝜑 → ( 𝑇 ↾t ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∈ Comp ) |
66 |
58 65
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝐽 ↾t ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∈ Comp ) |
67 |
|
f1of |
⊢ ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) : ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) –1-1-onto→ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) → ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) : ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ⟶ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) |
68 |
48 67
|
syl |
⊢ ( 𝜑 → ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) : ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ⟶ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) |
69 |
19 41
|
sstrdi |
⊢ ( 𝜑 → ran 𝐹 ⊆ ℂ ) |
70 |
21 69
|
sstrid |
⊢ ( 𝜑 → ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ⊆ ℂ ) |
71 |
|
rescncf |
⊢ ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ⊆ 𝑋 → ( 𝐹 ∈ ( 𝑋 –cn→ ℝ ) → ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∈ ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) –cn→ ℝ ) ) ) |
72 |
7 1 71
|
sylc |
⊢ ( 𝜑 → ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∈ ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) –cn→ ℝ ) ) |
73 |
|
cncffvrn |
⊢ ( ( ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ⊆ ℂ ∧ ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∈ ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) –cn→ ℝ ) ) → ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∈ ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) –cn→ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ↔ ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) : ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ⟶ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) |
74 |
70 72 73
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∈ ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) –cn→ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ↔ ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) : ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ⟶ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) |
75 |
68 74
|
mpbird |
⊢ ( 𝜑 → ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∈ ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) –cn→ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) |
76 |
|
eqid |
⊢ ( 𝐽 ↾t ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝐽 ↾t ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) |
77 |
9 76
|
cncfcnvcn |
⊢ ( ( ( 𝐽 ↾t ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∈ Comp ∧ ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∈ ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) –cn→ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) → ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) : ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) –1-1-onto→ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ↔ ◡ ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∈ ( ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) –cn→ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) |
78 |
66 75 77
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) : ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) –1-1-onto→ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ↔ ◡ ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∈ ( ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) –cn→ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) |
79 |
48 78
|
mpbid |
⊢ ( 𝜑 → ◡ ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∈ ( ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) –cn→ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) |
80 |
44 79
|
sseldd |
⊢ ( 𝜑 → ◡ ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∈ ( ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) –cn→ 𝑋 ) ) |
81 |
|
eqid |
⊢ ( 𝐽 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) = ( 𝐽 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) |
82 |
9 81 10
|
cncfcn |
⊢ ( ( ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ⊆ ℂ ∧ 𝑋 ⊆ ℂ ) → ( ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) –cn→ 𝑋 ) = ( ( 𝐽 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) Cn 𝑀 ) ) |
83 |
70 42 82
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) –cn→ 𝑋 ) = ( ( 𝐽 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) Cn 𝑀 ) ) |
84 |
80 83
|
eleqtrd |
⊢ ( 𝜑 → ◡ ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∈ ( ( 𝐽 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) Cn 𝑀 ) ) |
85 |
59 6
|
ltsubrpd |
⊢ ( 𝜑 → ( 𝐶 − 𝑅 ) < 𝐶 ) |
86 |
61 59 85
|
ltled |
⊢ ( 𝜑 → ( 𝐶 − 𝑅 ) ≤ 𝐶 ) |
87 |
59 6
|
ltaddrpd |
⊢ ( 𝜑 → 𝐶 < ( 𝐶 + 𝑅 ) ) |
88 |
59 62 87
|
ltled |
⊢ ( 𝜑 → 𝐶 ≤ ( 𝐶 + 𝑅 ) ) |
89 |
|
elicc2 |
⊢ ( ( ( 𝐶 − 𝑅 ) ∈ ℝ ∧ ( 𝐶 + 𝑅 ) ∈ ℝ ) → ( 𝐶 ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ↔ ( 𝐶 ∈ ℝ ∧ ( 𝐶 − 𝑅 ) ≤ 𝐶 ∧ 𝐶 ≤ ( 𝐶 + 𝑅 ) ) ) ) |
90 |
61 62 89
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ↔ ( 𝐶 ∈ ℝ ∧ ( 𝐶 − 𝑅 ) ≤ 𝐶 ∧ 𝐶 ≤ ( 𝐶 + 𝑅 ) ) ) ) |
91 |
59 86 88 90
|
mpbir3and |
⊢ ( 𝜑 → 𝐶 ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) |
92 |
|
ffun |
⊢ ( 𝐹 : 𝑋 ⟶ ℝ → Fun 𝐹 ) |
93 |
1 17 92
|
3syl |
⊢ ( 𝜑 → Fun 𝐹 ) |
94 |
|
fdm |
⊢ ( 𝐹 : 𝑋 ⟶ ℝ → dom 𝐹 = 𝑋 ) |
95 |
1 17 94
|
3syl |
⊢ ( 𝜑 → dom 𝐹 = 𝑋 ) |
96 |
7 95
|
sseqtrrd |
⊢ ( 𝜑 → ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ⊆ dom 𝐹 ) |
97 |
|
funfvima2 |
⊢ ( ( Fun 𝐹 ∧ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ⊆ dom 𝐹 ) → ( 𝐶 ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) → ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) |
98 |
93 96 97
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) → ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) |
99 |
91 98
|
mpd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) |
100 |
9
|
cnfldtopon |
⊢ 𝐽 ∈ ( TopOn ‘ ℂ ) |
101 |
|
resttopon |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ⊆ ℂ ) → ( 𝐽 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ∈ ( TopOn ‘ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) |
102 |
100 70 101
|
sylancr |
⊢ ( 𝜑 → ( 𝐽 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ∈ ( TopOn ‘ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) |
103 |
|
toponuni |
⊢ ( ( 𝐽 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ∈ ( TopOn ‘ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) → ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ∪ ( 𝐽 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) |
104 |
102 103
|
syl |
⊢ ( 𝜑 → ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ∪ ( 𝐽 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) |
105 |
99 104
|
eleqtrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ ∪ ( 𝐽 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) |
106 |
|
eqid |
⊢ ∪ ( 𝐽 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) = ∪ ( 𝐽 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) |
107 |
106
|
cncnpi |
⊢ ( ( ◡ ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∈ ( ( 𝐽 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) Cn 𝑀 ) ∧ ( 𝐹 ‘ 𝐶 ) ∈ ∪ ( 𝐽 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) → ◡ ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∈ ( ( ( 𝐽 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) CnP 𝑀 ) ‘ ( 𝐹 ‘ 𝐶 ) ) ) |
108 |
84 105 107
|
syl2anc |
⊢ ( 𝜑 → ◡ ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∈ ( ( ( 𝐽 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) CnP 𝑀 ) ‘ ( 𝐹 ‘ 𝐶 ) ) ) |
109 |
38 108
|
eqeltrrd |
⊢ ( 𝜑 → ( ◡ 𝐹 ↾ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ∈ ( ( ( 𝐽 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) CnP 𝑀 ) ‘ ( 𝐹 ‘ 𝐶 ) ) ) |
110 |
11
|
oveq1i |
⊢ ( 𝑁 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) = ( ( 𝐽 ↾t 𝑌 ) ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) |
111 |
|
ssexg |
⊢ ( ( 𝑌 ⊆ ℝ ∧ ℝ ∈ V ) → 𝑌 ∈ V ) |
112 |
20 54 111
|
sylancl |
⊢ ( 𝜑 → 𝑌 ∈ V ) |
113 |
|
restabs |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ⊆ 𝑌 ∧ 𝑌 ∈ V ) → ( ( 𝐽 ↾t 𝑌 ) ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) = ( 𝐽 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) |
114 |
52 22 112 113
|
mp3an2i |
⊢ ( 𝜑 → ( ( 𝐽 ↾t 𝑌 ) ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) = ( 𝐽 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) |
115 |
110 114
|
syl5eq |
⊢ ( 𝜑 → ( 𝑁 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) = ( 𝐽 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) |
116 |
115
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑁 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) CnP 𝑀 ) = ( ( 𝐽 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) CnP 𝑀 ) ) |
117 |
116
|
fveq1d |
⊢ ( 𝜑 → ( ( ( 𝑁 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) CnP 𝑀 ) ‘ ( 𝐹 ‘ 𝐶 ) ) = ( ( ( 𝐽 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) CnP 𝑀 ) ‘ ( 𝐹 ‘ 𝐶 ) ) ) |
118 |
109 117
|
eleqtrrd |
⊢ ( 𝜑 → ( ◡ 𝐹 ↾ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ∈ ( ( ( 𝑁 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) CnP 𝑀 ) ‘ ( 𝐹 ‘ 𝐶 ) ) ) |
119 |
20 41
|
sstrdi |
⊢ ( 𝜑 → 𝑌 ⊆ ℂ ) |
120 |
|
resttopon |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ 𝑌 ⊆ ℂ ) → ( 𝐽 ↾t 𝑌 ) ∈ ( TopOn ‘ 𝑌 ) ) |
121 |
100 119 120
|
sylancr |
⊢ ( 𝜑 → ( 𝐽 ↾t 𝑌 ) ∈ ( TopOn ‘ 𝑌 ) ) |
122 |
11 121
|
eqeltrid |
⊢ ( 𝜑 → 𝑁 ∈ ( TopOn ‘ 𝑌 ) ) |
123 |
|
topontop |
⊢ ( 𝑁 ∈ ( TopOn ‘ 𝑌 ) → 𝑁 ∈ Top ) |
124 |
122 123
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ Top ) |
125 |
|
toponuni |
⊢ ( 𝑁 ∈ ( TopOn ‘ 𝑌 ) → 𝑌 = ∪ 𝑁 ) |
126 |
122 125
|
syl |
⊢ ( 𝜑 → 𝑌 = ∪ 𝑁 ) |
127 |
22 126
|
sseqtrd |
⊢ ( 𝜑 → ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ⊆ ∪ 𝑁 ) |
128 |
22 20
|
sstrd |
⊢ ( 𝜑 → ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ⊆ ℝ ) |
129 |
|
difssd |
⊢ ( 𝜑 → ( ℝ ∖ 𝑌 ) ⊆ ℝ ) |
130 |
128 129
|
unssd |
⊢ ( 𝜑 → ( ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∪ ( ℝ ∖ 𝑌 ) ) ⊆ ℝ ) |
131 |
|
ssun1 |
⊢ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ⊆ ( ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∪ ( ℝ ∖ 𝑌 ) ) |
132 |
131
|
a1i |
⊢ ( 𝜑 → ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ⊆ ( ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∪ ( ℝ ∖ 𝑌 ) ) ) |
133 |
25
|
ntrss |
⊢ ( ( 𝑇 ∈ Top ∧ ( ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∪ ( ℝ ∖ 𝑌 ) ) ⊆ ℝ ∧ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ⊆ ( ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∪ ( ℝ ∖ 𝑌 ) ) ) → ( ( int ‘ 𝑇 ) ‘ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ⊆ ( ( int ‘ 𝑇 ) ‘ ( ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∪ ( ℝ ∖ 𝑌 ) ) ) ) |
134 |
13 130 132 133
|
mp3an2i |
⊢ ( 𝜑 → ( ( int ‘ 𝑇 ) ‘ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ⊆ ( ( int ‘ 𝑇 ) ‘ ( ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∪ ( ℝ ∖ 𝑌 ) ) ) ) |
135 |
134 31
|
sseldd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ ( ( int ‘ 𝑇 ) ‘ ( ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∪ ( ℝ ∖ 𝑌 ) ) ) ) |
136 |
|
f1of |
⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → 𝐹 : 𝑋 ⟶ 𝑌 ) |
137 |
4 136
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝑌 ) |
138 |
137 5
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ 𝑌 ) |
139 |
135 138
|
elind |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ ( ( ( int ‘ 𝑇 ) ‘ ( ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∪ ( ℝ ∖ 𝑌 ) ) ) ∩ 𝑌 ) ) |
140 |
|
eqid |
⊢ ( 𝑇 ↾t 𝑌 ) = ( 𝑇 ↾t 𝑌 ) |
141 |
25 140
|
restntr |
⊢ ( ( 𝑇 ∈ Top ∧ 𝑌 ⊆ ℝ ∧ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ⊆ 𝑌 ) → ( ( int ‘ ( 𝑇 ↾t 𝑌 ) ) ‘ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) = ( ( ( int ‘ 𝑇 ) ‘ ( ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∪ ( ℝ ∖ 𝑌 ) ) ) ∩ 𝑌 ) ) |
142 |
13 20 22 141
|
mp3an2i |
⊢ ( 𝜑 → ( ( int ‘ ( 𝑇 ↾t 𝑌 ) ) ‘ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) = ( ( ( int ‘ 𝑇 ) ‘ ( ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∪ ( ℝ ∖ 𝑌 ) ) ) ∩ 𝑌 ) ) |
143 |
|
restabs |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ ℝ ∧ ℝ ∈ V ) → ( ( 𝐽 ↾t ℝ ) ↾t 𝑌 ) = ( 𝐽 ↾t 𝑌 ) ) |
144 |
52 20 55 143
|
mp3an2i |
⊢ ( 𝜑 → ( ( 𝐽 ↾t ℝ ) ↾t 𝑌 ) = ( 𝐽 ↾t 𝑌 ) ) |
145 |
50
|
oveq1i |
⊢ ( 𝑇 ↾t 𝑌 ) = ( ( 𝐽 ↾t ℝ ) ↾t 𝑌 ) |
146 |
144 145 11
|
3eqtr4g |
⊢ ( 𝜑 → ( 𝑇 ↾t 𝑌 ) = 𝑁 ) |
147 |
146
|
fveq2d |
⊢ ( 𝜑 → ( int ‘ ( 𝑇 ↾t 𝑌 ) ) = ( int ‘ 𝑁 ) ) |
148 |
147
|
fveq1d |
⊢ ( 𝜑 → ( ( int ‘ ( 𝑇 ↾t 𝑌 ) ) ‘ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) = ( ( int ‘ 𝑁 ) ‘ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) |
149 |
142 148
|
eqtr3d |
⊢ ( 𝜑 → ( ( ( int ‘ 𝑇 ) ‘ ( ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∪ ( ℝ ∖ 𝑌 ) ) ) ∩ 𝑌 ) = ( ( int ‘ 𝑁 ) ‘ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) |
150 |
139 149
|
eleqtrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ ( ( int ‘ 𝑁 ) ‘ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) |
151 |
126
|
feq2d |
⊢ ( 𝜑 → ( ◡ 𝐹 : 𝑌 ⟶ 𝑋 ↔ ◡ 𝐹 : ∪ 𝑁 ⟶ 𝑋 ) ) |
152 |
35 151
|
mpbid |
⊢ ( 𝜑 → ◡ 𝐹 : ∪ 𝑁 ⟶ 𝑋 ) |
153 |
|
resttopon |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ 𝑋 ⊆ ℂ ) → ( 𝐽 ↾t 𝑋 ) ∈ ( TopOn ‘ 𝑋 ) ) |
154 |
100 42 153
|
sylancr |
⊢ ( 𝜑 → ( 𝐽 ↾t 𝑋 ) ∈ ( TopOn ‘ 𝑋 ) ) |
155 |
10 154
|
eqeltrid |
⊢ ( 𝜑 → 𝑀 ∈ ( TopOn ‘ 𝑋 ) ) |
156 |
|
toponuni |
⊢ ( 𝑀 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝑀 ) |
157 |
|
feq3 |
⊢ ( 𝑋 = ∪ 𝑀 → ( ◡ 𝐹 : ∪ 𝑁 ⟶ 𝑋 ↔ ◡ 𝐹 : ∪ 𝑁 ⟶ ∪ 𝑀 ) ) |
158 |
155 156 157
|
3syl |
⊢ ( 𝜑 → ( ◡ 𝐹 : ∪ 𝑁 ⟶ 𝑋 ↔ ◡ 𝐹 : ∪ 𝑁 ⟶ ∪ 𝑀 ) ) |
159 |
152 158
|
mpbid |
⊢ ( 𝜑 → ◡ 𝐹 : ∪ 𝑁 ⟶ ∪ 𝑀 ) |
160 |
|
eqid |
⊢ ∪ 𝑁 = ∪ 𝑁 |
161 |
|
eqid |
⊢ ∪ 𝑀 = ∪ 𝑀 |
162 |
160 161
|
cnprest |
⊢ ( ( ( 𝑁 ∈ Top ∧ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ⊆ ∪ 𝑁 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ∈ ( ( int ‘ 𝑁 ) ‘ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ∧ ◡ 𝐹 : ∪ 𝑁 ⟶ ∪ 𝑀 ) ) → ( ◡ 𝐹 ∈ ( ( 𝑁 CnP 𝑀 ) ‘ ( 𝐹 ‘ 𝐶 ) ) ↔ ( ◡ 𝐹 ↾ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ∈ ( ( ( 𝑁 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) CnP 𝑀 ) ‘ ( 𝐹 ‘ 𝐶 ) ) ) ) |
163 |
124 127 150 159 162
|
syl22anc |
⊢ ( 𝜑 → ( ◡ 𝐹 ∈ ( ( 𝑁 CnP 𝑀 ) ‘ ( 𝐹 ‘ 𝐶 ) ) ↔ ( ◡ 𝐹 ↾ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ∈ ( ( ( 𝑁 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) CnP 𝑀 ) ‘ ( 𝐹 ‘ 𝐶 ) ) ) ) |
164 |
118 163
|
mpbird |
⊢ ( 𝜑 → ◡ 𝐹 ∈ ( ( 𝑁 CnP 𝑀 ) ‘ ( 𝐹 ‘ 𝐶 ) ) ) |
165 |
32 164
|
jca |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐶 ) ∈ ( ( int ‘ 𝑇 ) ‘ 𝑌 ) ∧ ◡ 𝐹 ∈ ( ( 𝑁 CnP 𝑀 ) ‘ ( 𝐹 ‘ 𝐶 ) ) ) ) |