| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvco.f |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) |
| 2 |
|
dvco.x |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) |
| 3 |
|
dvco.g |
⊢ ( 𝜑 → 𝐺 : 𝑌 ⟶ 𝑋 ) |
| 4 |
|
dvco.y |
⊢ ( 𝜑 → 𝑌 ⊆ 𝑇 ) |
| 5 |
|
dvco.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
| 6 |
|
dvco.t |
⊢ ( 𝜑 → 𝑇 ∈ { ℝ , ℂ } ) |
| 7 |
|
dvco.df |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐶 ) ∈ dom ( 𝑆 D 𝐹 ) ) |
| 8 |
|
dvco.dg |
⊢ ( 𝜑 → 𝐶 ∈ dom ( 𝑇 D 𝐺 ) ) |
| 9 |
|
dvfg |
⊢ ( 𝑇 ∈ { ℝ , ℂ } → ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) : dom ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ⟶ ℂ ) |
| 10 |
|
ffun |
⊢ ( ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) : dom ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ⟶ ℂ → Fun ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ) |
| 11 |
6 9 10
|
3syl |
⊢ ( 𝜑 → Fun ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ) |
| 12 |
|
recnprss |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) |
| 13 |
5 12
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 14 |
|
recnprss |
⊢ ( 𝑇 ∈ { ℝ , ℂ } → 𝑇 ⊆ ℂ ) |
| 15 |
6 14
|
syl |
⊢ ( 𝜑 → 𝑇 ⊆ ℂ ) |
| 16 |
|
dvfg |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) |
| 17 |
|
ffun |
⊢ ( ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ → Fun ( 𝑆 D 𝐹 ) ) |
| 18 |
|
funfvbrb |
⊢ ( Fun ( 𝑆 D 𝐹 ) → ( ( 𝐺 ‘ 𝐶 ) ∈ dom ( 𝑆 D 𝐹 ) ↔ ( 𝐺 ‘ 𝐶 ) ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) |
| 19 |
5 16 17 18
|
4syl |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝐶 ) ∈ dom ( 𝑆 D 𝐹 ) ↔ ( 𝐺 ‘ 𝐶 ) ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) |
| 20 |
7 19
|
mpbid |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐶 ) ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ ( 𝐺 ‘ 𝐶 ) ) ) |
| 21 |
|
dvfg |
⊢ ( 𝑇 ∈ { ℝ , ℂ } → ( 𝑇 D 𝐺 ) : dom ( 𝑇 D 𝐺 ) ⟶ ℂ ) |
| 22 |
|
ffun |
⊢ ( ( 𝑇 D 𝐺 ) : dom ( 𝑇 D 𝐺 ) ⟶ ℂ → Fun ( 𝑇 D 𝐺 ) ) |
| 23 |
|
funfvbrb |
⊢ ( Fun ( 𝑇 D 𝐺 ) → ( 𝐶 ∈ dom ( 𝑇 D 𝐺 ) ↔ 𝐶 ( 𝑇 D 𝐺 ) ( ( 𝑇 D 𝐺 ) ‘ 𝐶 ) ) ) |
| 24 |
6 21 22 23
|
4syl |
⊢ ( 𝜑 → ( 𝐶 ∈ dom ( 𝑇 D 𝐺 ) ↔ 𝐶 ( 𝑇 D 𝐺 ) ( ( 𝑇 D 𝐺 ) ‘ 𝐶 ) ) ) |
| 25 |
8 24
|
mpbid |
⊢ ( 𝜑 → 𝐶 ( 𝑇 D 𝐺 ) ( ( 𝑇 D 𝐺 ) ‘ 𝐶 ) ) |
| 26 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 27 |
1 2 3 4 13 15 20 25 26
|
dvcobr |
⊢ ( 𝜑 → 𝐶 ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ( ( ( 𝑆 D 𝐹 ) ‘ ( 𝐺 ‘ 𝐶 ) ) · ( ( 𝑇 D 𝐺 ) ‘ 𝐶 ) ) ) |
| 28 |
|
funbrfv |
⊢ ( Fun ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) → ( 𝐶 ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ( ( ( 𝑆 D 𝐹 ) ‘ ( 𝐺 ‘ 𝐶 ) ) · ( ( 𝑇 D 𝐺 ) ‘ 𝐶 ) ) → ( ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ‘ 𝐶 ) = ( ( ( 𝑆 D 𝐹 ) ‘ ( 𝐺 ‘ 𝐶 ) ) · ( ( 𝑇 D 𝐺 ) ‘ 𝐶 ) ) ) ) |
| 29 |
11 27 28
|
sylc |
⊢ ( 𝜑 → ( ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ‘ 𝐶 ) = ( ( ( 𝑆 D 𝐹 ) ‘ ( 𝐺 ‘ 𝐶 ) ) · ( ( 𝑇 D 𝐺 ) ‘ 𝐶 ) ) ) |