Step |
Hyp |
Ref |
Expression |
1 |
|
dvco.f |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) |
2 |
|
dvco.x |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) |
3 |
|
dvco.g |
⊢ ( 𝜑 → 𝐺 : 𝑌 ⟶ 𝑋 ) |
4 |
|
dvco.y |
⊢ ( 𝜑 → 𝑌 ⊆ 𝑇 ) |
5 |
|
dvcobr.s |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
6 |
|
dvcobr.t |
⊢ ( 𝜑 → 𝑇 ⊆ ℂ ) |
7 |
|
dvco.k |
⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) |
8 |
|
dvco.l |
⊢ ( 𝜑 → 𝐿 ∈ 𝑉 ) |
9 |
|
dvco.bf |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐶 ) ( 𝑆 D 𝐹 ) 𝐾 ) |
10 |
|
dvco.bg |
⊢ ( 𝜑 → 𝐶 ( 𝑇 D 𝐺 ) 𝐿 ) |
11 |
|
dvco.j |
⊢ 𝐽 = ( TopOpen ‘ ℂfld ) |
12 |
|
eqid |
⊢ ( 𝐽 ↾t 𝑇 ) = ( 𝐽 ↾t 𝑇 ) |
13 |
|
eqid |
⊢ ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) = ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) |
14 |
2 5
|
sstrd |
⊢ ( 𝜑 → 𝑋 ⊆ ℂ ) |
15 |
3 14
|
fssd |
⊢ ( 𝜑 → 𝐺 : 𝑌 ⟶ ℂ ) |
16 |
12 11 13 6 15 4
|
eldv |
⊢ ( 𝜑 → ( 𝐶 ( 𝑇 D 𝐺 ) 𝐿 ↔ ( 𝐶 ∈ ( ( int ‘ ( 𝐽 ↾t 𝑇 ) ) ‘ 𝑌 ) ∧ 𝐿 ∈ ( ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) limℂ 𝐶 ) ) ) ) |
17 |
10 16
|
mpbid |
⊢ ( 𝜑 → ( 𝐶 ∈ ( ( int ‘ ( 𝐽 ↾t 𝑇 ) ) ‘ 𝑌 ) ∧ 𝐿 ∈ ( ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) limℂ 𝐶 ) ) ) |
18 |
17
|
simpld |
⊢ ( 𝜑 → 𝐶 ∈ ( ( int ‘ ( 𝐽 ↾t 𝑇 ) ) ‘ 𝑌 ) ) |
19 |
5 1 2
|
dvcl |
⊢ ( ( 𝜑 ∧ ( 𝐺 ‘ 𝐶 ) ( 𝑆 D 𝐹 ) 𝐾 ) → 𝐾 ∈ ℂ ) |
20 |
9 19
|
mpdan |
⊢ ( 𝜑 → 𝐾 ∈ ℂ ) |
21 |
20
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → 𝐾 ∈ ℂ ) |
22 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → 𝐹 : 𝑋 ⟶ ℂ ) |
23 |
|
eldifi |
⊢ ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) → 𝑧 ∈ 𝑌 ) |
24 |
|
ffvelrn |
⊢ ( ( 𝐺 : 𝑌 ⟶ 𝑋 ∧ 𝑧 ∈ 𝑌 ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝑋 ) |
25 |
3 23 24
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝑋 ) |
26 |
22 25
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) ∈ ℂ ) |
27 |
26
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) ∈ ℂ ) |
28 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → 𝐺 : 𝑌 ⟶ 𝑋 ) |
29 |
6 15 4
|
dvbss |
⊢ ( 𝜑 → dom ( 𝑇 D 𝐺 ) ⊆ 𝑌 ) |
30 |
|
reldv |
⊢ Rel ( 𝑇 D 𝐺 ) |
31 |
|
releldm |
⊢ ( ( Rel ( 𝑇 D 𝐺 ) ∧ 𝐶 ( 𝑇 D 𝐺 ) 𝐿 ) → 𝐶 ∈ dom ( 𝑇 D 𝐺 ) ) |
32 |
30 10 31
|
sylancr |
⊢ ( 𝜑 → 𝐶 ∈ dom ( 𝑇 D 𝐺 ) ) |
33 |
29 32
|
sseldd |
⊢ ( 𝜑 → 𝐶 ∈ 𝑌 ) |
34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → 𝐶 ∈ 𝑌 ) |
35 |
28 34
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( 𝐺 ‘ 𝐶 ) ∈ 𝑋 ) |
36 |
22 35
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ∈ ℂ ) |
37 |
36
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ∈ ℂ ) |
38 |
27 37
|
subcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ∈ ℂ ) |
39 |
15
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → 𝐺 : 𝑌 ⟶ ℂ ) |
40 |
23
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → 𝑧 ∈ 𝑌 ) |
41 |
39 40
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( 𝐺 ‘ 𝑧 ) ∈ ℂ ) |
42 |
33
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → 𝐶 ∈ 𝑌 ) |
43 |
39 42
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( 𝐺 ‘ 𝐶 ) ∈ ℂ ) |
44 |
41 43
|
subcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ∈ ℂ ) |
45 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) |
46 |
41 43
|
subeq0ad |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) = 0 ↔ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) ) |
47 |
46
|
necon3abid |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ≠ 0 ↔ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) ) |
48 |
45 47
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ≠ 0 ) |
49 |
38 44 48
|
divcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ∈ ℂ ) |
50 |
21 49
|
ifclda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) ∈ ℂ ) |
51 |
4 6
|
sstrd |
⊢ ( 𝜑 → 𝑌 ⊆ ℂ ) |
52 |
15 51 33
|
dvlem |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ∈ ℂ ) |
53 |
|
ssidd |
⊢ ( 𝜑 → ℂ ⊆ ℂ ) |
54 |
11
|
cnfldtopon |
⊢ 𝐽 ∈ ( TopOn ‘ ℂ ) |
55 |
|
txtopon |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ 𝐽 ∈ ( TopOn ‘ ℂ ) ) → ( 𝐽 ×t 𝐽 ) ∈ ( TopOn ‘ ( ℂ × ℂ ) ) ) |
56 |
54 54 55
|
mp2an |
⊢ ( 𝐽 ×t 𝐽 ) ∈ ( TopOn ‘ ( ℂ × ℂ ) ) |
57 |
56
|
toponrestid |
⊢ ( 𝐽 ×t 𝐽 ) = ( ( 𝐽 ×t 𝐽 ) ↾t ( ℂ × ℂ ) ) |
58 |
25
|
anim1i |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ( 𝐺 ‘ 𝑧 ) ≠ ( 𝐺 ‘ 𝐶 ) ) → ( ( 𝐺 ‘ 𝑧 ) ∈ 𝑋 ∧ ( 𝐺 ‘ 𝑧 ) ≠ ( 𝐺 ‘ 𝐶 ) ) ) |
59 |
|
eldifsn |
⊢ ( ( 𝐺 ‘ 𝑧 ) ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) ↔ ( ( 𝐺 ‘ 𝑧 ) ∈ 𝑋 ∧ ( 𝐺 ‘ 𝑧 ) ≠ ( 𝐺 ‘ 𝐶 ) ) ) |
60 |
58 59
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ( 𝐺 ‘ 𝑧 ) ≠ ( 𝐺 ‘ 𝐶 ) ) → ( 𝐺 ‘ 𝑧 ) ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) ) |
61 |
60
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ∧ ( 𝐺 ‘ 𝑧 ) ≠ ( 𝐺 ‘ 𝐶 ) ) ) → ( 𝐺 ‘ 𝑧 ) ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) ) |
62 |
|
eldifsni |
⊢ ( 𝑦 ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) → 𝑦 ≠ ( 𝐺 ‘ 𝐶 ) ) |
63 |
|
ifnefalse |
⊢ ( 𝑦 ≠ ( 𝐺 ‘ 𝐶 ) → if ( 𝑦 = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) = ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) |
64 |
62 63
|
syl |
⊢ ( 𝑦 ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) → if ( 𝑦 = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) = ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) |
65 |
64
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) ) → if ( 𝑦 = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) = ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) |
66 |
3 33
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐶 ) ∈ 𝑋 ) |
67 |
1 14 66
|
dvlem |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) ) → ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ∈ ℂ ) |
68 |
65 67
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) ) → if ( 𝑦 = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) ∈ ℂ ) |
69 |
|
limcresi |
⊢ ( 𝐺 limℂ 𝐶 ) ⊆ ( ( 𝐺 ↾ ( 𝑌 ∖ { 𝐶 } ) ) limℂ 𝐶 ) |
70 |
3
|
feqmptd |
⊢ ( 𝜑 → 𝐺 = ( 𝑧 ∈ 𝑌 ↦ ( 𝐺 ‘ 𝑧 ) ) ) |
71 |
70
|
reseq1d |
⊢ ( 𝜑 → ( 𝐺 ↾ ( 𝑌 ∖ { 𝐶 } ) ) = ( ( 𝑧 ∈ 𝑌 ↦ ( 𝐺 ‘ 𝑧 ) ) ↾ ( 𝑌 ∖ { 𝐶 } ) ) ) |
72 |
|
difss |
⊢ ( 𝑌 ∖ { 𝐶 } ) ⊆ 𝑌 |
73 |
|
resmpt |
⊢ ( ( 𝑌 ∖ { 𝐶 } ) ⊆ 𝑌 → ( ( 𝑧 ∈ 𝑌 ↦ ( 𝐺 ‘ 𝑧 ) ) ↾ ( 𝑌 ∖ { 𝐶 } ) ) = ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( 𝐺 ‘ 𝑧 ) ) ) |
74 |
72 73
|
ax-mp |
⊢ ( ( 𝑧 ∈ 𝑌 ↦ ( 𝐺 ‘ 𝑧 ) ) ↾ ( 𝑌 ∖ { 𝐶 } ) ) = ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( 𝐺 ‘ 𝑧 ) ) |
75 |
71 74
|
eqtrdi |
⊢ ( 𝜑 → ( 𝐺 ↾ ( 𝑌 ∖ { 𝐶 } ) ) = ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( 𝐺 ‘ 𝑧 ) ) ) |
76 |
75
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐺 ↾ ( 𝑌 ∖ { 𝐶 } ) ) limℂ 𝐶 ) = ( ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( 𝐺 ‘ 𝑧 ) ) limℂ 𝐶 ) ) |
77 |
69 76
|
sseqtrid |
⊢ ( 𝜑 → ( 𝐺 limℂ 𝐶 ) ⊆ ( ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( 𝐺 ‘ 𝑧 ) ) limℂ 𝐶 ) ) |
78 |
|
eqid |
⊢ ( 𝐽 ↾t 𝑌 ) = ( 𝐽 ↾t 𝑌 ) |
79 |
78 11
|
dvcnp2 |
⊢ ( ( ( 𝑇 ⊆ ℂ ∧ 𝐺 : 𝑌 ⟶ ℂ ∧ 𝑌 ⊆ 𝑇 ) ∧ 𝐶 ∈ dom ( 𝑇 D 𝐺 ) ) → 𝐺 ∈ ( ( ( 𝐽 ↾t 𝑌 ) CnP 𝐽 ) ‘ 𝐶 ) ) |
80 |
6 15 4 32 79
|
syl31anc |
⊢ ( 𝜑 → 𝐺 ∈ ( ( ( 𝐽 ↾t 𝑌 ) CnP 𝐽 ) ‘ 𝐶 ) ) |
81 |
11 78
|
cnplimc |
⊢ ( ( 𝑌 ⊆ ℂ ∧ 𝐶 ∈ 𝑌 ) → ( 𝐺 ∈ ( ( ( 𝐽 ↾t 𝑌 ) CnP 𝐽 ) ‘ 𝐶 ) ↔ ( 𝐺 : 𝑌 ⟶ ℂ ∧ ( 𝐺 ‘ 𝐶 ) ∈ ( 𝐺 limℂ 𝐶 ) ) ) ) |
82 |
51 33 81
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ∈ ( ( ( 𝐽 ↾t 𝑌 ) CnP 𝐽 ) ‘ 𝐶 ) ↔ ( 𝐺 : 𝑌 ⟶ ℂ ∧ ( 𝐺 ‘ 𝐶 ) ∈ ( 𝐺 limℂ 𝐶 ) ) ) ) |
83 |
80 82
|
mpbid |
⊢ ( 𝜑 → ( 𝐺 : 𝑌 ⟶ ℂ ∧ ( 𝐺 ‘ 𝐶 ) ∈ ( 𝐺 limℂ 𝐶 ) ) ) |
84 |
83
|
simprd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐶 ) ∈ ( 𝐺 limℂ 𝐶 ) ) |
85 |
77 84
|
sseldd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐶 ) ∈ ( ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( 𝐺 ‘ 𝑧 ) ) limℂ 𝐶 ) ) |
86 |
|
eqid |
⊢ ( 𝐽 ↾t 𝑆 ) = ( 𝐽 ↾t 𝑆 ) |
87 |
|
eqid |
⊢ ( 𝑦 ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) ↦ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) = ( 𝑦 ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) ↦ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) |
88 |
86 11 87 5 1 2
|
eldv |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝐶 ) ( 𝑆 D 𝐹 ) 𝐾 ↔ ( ( 𝐺 ‘ 𝐶 ) ∈ ( ( int ‘ ( 𝐽 ↾t 𝑆 ) ) ‘ 𝑋 ) ∧ 𝐾 ∈ ( ( 𝑦 ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) ↦ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) limℂ ( 𝐺 ‘ 𝐶 ) ) ) ) ) |
89 |
9 88
|
mpbid |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝐶 ) ∈ ( ( int ‘ ( 𝐽 ↾t 𝑆 ) ) ‘ 𝑋 ) ∧ 𝐾 ∈ ( ( 𝑦 ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) ↦ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) limℂ ( 𝐺 ‘ 𝐶 ) ) ) ) |
90 |
89
|
simprd |
⊢ ( 𝜑 → 𝐾 ∈ ( ( 𝑦 ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) ↦ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) limℂ ( 𝐺 ‘ 𝐶 ) ) ) |
91 |
64
|
mpteq2ia |
⊢ ( 𝑦 ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) ↦ if ( 𝑦 = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) ) = ( 𝑦 ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) ↦ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) |
92 |
91
|
oveq1i |
⊢ ( ( 𝑦 ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) ↦ if ( 𝑦 = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) ) limℂ ( 𝐺 ‘ 𝐶 ) ) = ( ( 𝑦 ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) ↦ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) limℂ ( 𝐺 ‘ 𝐶 ) ) |
93 |
90 92
|
eleqtrrdi |
⊢ ( 𝜑 → 𝐾 ∈ ( ( 𝑦 ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) ↦ if ( 𝑦 = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) ) limℂ ( 𝐺 ‘ 𝐶 ) ) ) |
94 |
|
eqeq1 |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( 𝑦 = ( 𝐺 ‘ 𝐶 ) ↔ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) ) |
95 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) ) |
96 |
95
|
oveq1d |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) = ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) |
97 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) = ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) |
98 |
96 97
|
oveq12d |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) = ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) |
99 |
94 98
|
ifbieq2d |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → if ( 𝑦 = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) = if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) ) |
100 |
|
iftrue |
⊢ ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) → if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) = 𝐾 ) |
101 |
100
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) ) → if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) = 𝐾 ) |
102 |
61 68 85 93 99 101
|
limcco |
⊢ ( 𝜑 → 𝐾 ∈ ( ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) ) limℂ 𝐶 ) ) |
103 |
17
|
simprd |
⊢ ( 𝜑 → 𝐿 ∈ ( ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) limℂ 𝐶 ) ) |
104 |
11
|
mulcn |
⊢ · ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) |
105 |
6 15 4
|
dvcl |
⊢ ( ( 𝜑 ∧ 𝐶 ( 𝑇 D 𝐺 ) 𝐿 ) → 𝐿 ∈ ℂ ) |
106 |
10 105
|
mpdan |
⊢ ( 𝜑 → 𝐿 ∈ ℂ ) |
107 |
20 106
|
opelxpd |
⊢ ( 𝜑 → 〈 𝐾 , 𝐿 〉 ∈ ( ℂ × ℂ ) ) |
108 |
56
|
toponunii |
⊢ ( ℂ × ℂ ) = ∪ ( 𝐽 ×t 𝐽 ) |
109 |
108
|
cncnpi |
⊢ ( ( · ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ∧ 〈 𝐾 , 𝐿 〉 ∈ ( ℂ × ℂ ) ) → · ∈ ( ( ( 𝐽 ×t 𝐽 ) CnP 𝐽 ) ‘ 〈 𝐾 , 𝐿 〉 ) ) |
110 |
104 107 109
|
sylancr |
⊢ ( 𝜑 → · ∈ ( ( ( 𝐽 ×t 𝐽 ) CnP 𝐽 ) ‘ 〈 𝐾 , 𝐿 〉 ) ) |
111 |
50 52 53 53 11 57 102 103 110
|
limccnp2 |
⊢ ( 𝜑 → ( 𝐾 · 𝐿 ) ∈ ( ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) · ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) ) limℂ 𝐶 ) ) |
112 |
|
oveq1 |
⊢ ( 𝐾 = if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) → ( 𝐾 · ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) = ( if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) · ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) ) |
113 |
112
|
eqeq1d |
⊢ ( 𝐾 = if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) → ( ( 𝐾 · ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) = ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑧 − 𝐶 ) ) ↔ ( if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) · ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) = ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑧 − 𝐶 ) ) ) ) |
114 |
|
oveq1 |
⊢ ( ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) = if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) → ( ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) · ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) = ( if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) · ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) ) |
115 |
114
|
eqeq1d |
⊢ ( ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) = if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) → ( ( ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) · ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) = ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑧 − 𝐶 ) ) ↔ ( if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) · ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) = ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑧 − 𝐶 ) ) ) ) |
116 |
21
|
mul01d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( 𝐾 · 0 ) = 0 ) |
117 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → 𝑋 ⊆ ℂ ) |
118 |
117 25
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( 𝐺 ‘ 𝑧 ) ∈ ℂ ) |
119 |
117 35
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( 𝐺 ‘ 𝐶 ) ∈ ℂ ) |
120 |
118 119
|
subeq0ad |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) = 0 ↔ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) ) |
121 |
120
|
biimpar |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) = 0 ) |
122 |
121
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) = ( 0 / ( 𝑧 − 𝐶 ) ) ) |
123 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → 𝑌 ⊆ ℂ ) |
124 |
23
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → 𝑧 ∈ 𝑌 ) |
125 |
123 124
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → 𝑧 ∈ ℂ ) |
126 |
123 34
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → 𝐶 ∈ ℂ ) |
127 |
125 126
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( 𝑧 − 𝐶 ) ∈ ℂ ) |
128 |
|
eldifsni |
⊢ ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) → 𝑧 ≠ 𝐶 ) |
129 |
128
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → 𝑧 ≠ 𝐶 ) |
130 |
125 126 129
|
subne0d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( 𝑧 − 𝐶 ) ≠ 0 ) |
131 |
127 130
|
div0d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( 0 / ( 𝑧 − 𝐶 ) ) = 0 ) |
132 |
131
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( 0 / ( 𝑧 − 𝐶 ) ) = 0 ) |
133 |
122 132
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) = 0 ) |
134 |
133
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( 𝐾 · ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) = ( 𝐾 · 0 ) ) |
135 |
|
fveq2 |
⊢ ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) |
136 |
26 36
|
subeq0ad |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) = 0 ↔ ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) |
137 |
135 136
|
syl5ibr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) = 0 ) ) |
138 |
137
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) = 0 ) |
139 |
138
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑧 − 𝐶 ) ) = ( 0 / ( 𝑧 − 𝐶 ) ) ) |
140 |
139 132
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑧 − 𝐶 ) ) = 0 ) |
141 |
116 134 140
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( 𝐾 · ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) = ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑧 − 𝐶 ) ) ) |
142 |
127
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( 𝑧 − 𝐶 ) ∈ ℂ ) |
143 |
130
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( 𝑧 − 𝐶 ) ≠ 0 ) |
144 |
38 44 142 48 143
|
dmdcan2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) · ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) = ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑧 − 𝐶 ) ) ) |
145 |
113 115 141 144
|
ifbothda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) · ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) = ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑧 − 𝐶 ) ) ) |
146 |
|
fvco3 |
⊢ ( ( 𝐺 : 𝑌 ⟶ 𝑋 ∧ 𝑧 ∈ 𝑌 ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑧 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) ) |
147 |
3 23 146
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑧 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) ) |
148 |
|
fvco3 |
⊢ ( ( 𝐺 : 𝑌 ⟶ 𝑋 ∧ 𝐶 ∈ 𝑌 ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝐶 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) |
149 |
3 33 148
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝐶 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) |
150 |
149
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝐶 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) |
151 |
147 150
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑧 ) − ( ( 𝐹 ∘ 𝐺 ) ‘ 𝐶 ) ) = ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) |
152 |
151
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑧 ) − ( ( 𝐹 ∘ 𝐺 ) ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) = ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑧 − 𝐶 ) ) ) |
153 |
145 152
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) · ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) = ( ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑧 ) − ( ( 𝐹 ∘ 𝐺 ) ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) |
154 |
153
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) · ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) ) = ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑧 ) − ( ( 𝐹 ∘ 𝐺 ) ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) ) |
155 |
154
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) · ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) ) limℂ 𝐶 ) = ( ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑧 ) − ( ( 𝐹 ∘ 𝐺 ) ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) limℂ 𝐶 ) ) |
156 |
111 155
|
eleqtrd |
⊢ ( 𝜑 → ( 𝐾 · 𝐿 ) ∈ ( ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑧 ) − ( ( 𝐹 ∘ 𝐺 ) ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) limℂ 𝐶 ) ) |
157 |
|
eqid |
⊢ ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑧 ) − ( ( 𝐹 ∘ 𝐺 ) ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) = ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑧 ) − ( ( 𝐹 ∘ 𝐺 ) ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) |
158 |
|
fco |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) → ( 𝐹 ∘ 𝐺 ) : 𝑌 ⟶ ℂ ) |
159 |
1 3 158
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) : 𝑌 ⟶ ℂ ) |
160 |
12 11 157 6 159 4
|
eldv |
⊢ ( 𝜑 → ( 𝐶 ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ( 𝐾 · 𝐿 ) ↔ ( 𝐶 ∈ ( ( int ‘ ( 𝐽 ↾t 𝑇 ) ) ‘ 𝑌 ) ∧ ( 𝐾 · 𝐿 ) ∈ ( ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑧 ) − ( ( 𝐹 ∘ 𝐺 ) ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) limℂ 𝐶 ) ) ) ) |
161 |
18 156 160
|
mpbir2and |
⊢ ( 𝜑 → 𝐶 ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ( 𝐾 · 𝐿 ) ) |