Step |
Hyp |
Ref |
Expression |
1 |
|
dvco.f |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) |
2 |
|
dvco.x |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) |
3 |
|
dvco.g |
⊢ ( 𝜑 → 𝐺 : 𝑌 ⟶ 𝑋 ) |
4 |
|
dvco.y |
⊢ ( 𝜑 → 𝑌 ⊆ 𝑇 ) |
5 |
|
dvcobr.s |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
6 |
|
dvcobr.t |
⊢ ( 𝜑 → 𝑇 ⊆ ℂ ) |
7 |
|
dvco.bf |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐶 ) ( 𝑆 D 𝐹 ) 𝐾 ) |
8 |
|
dvco.bg |
⊢ ( 𝜑 → 𝐶 ( 𝑇 D 𝐺 ) 𝐿 ) |
9 |
|
dvco.j |
⊢ 𝐽 = ( TopOpen ‘ ℂfld ) |
10 |
|
eqid |
⊢ ( 𝐽 ↾t 𝑇 ) = ( 𝐽 ↾t 𝑇 ) |
11 |
|
eqid |
⊢ ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) = ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) |
12 |
2 5
|
sstrd |
⊢ ( 𝜑 → 𝑋 ⊆ ℂ ) |
13 |
3 12
|
fssd |
⊢ ( 𝜑 → 𝐺 : 𝑌 ⟶ ℂ ) |
14 |
10 9 11 6 13 4
|
eldv |
⊢ ( 𝜑 → ( 𝐶 ( 𝑇 D 𝐺 ) 𝐿 ↔ ( 𝐶 ∈ ( ( int ‘ ( 𝐽 ↾t 𝑇 ) ) ‘ 𝑌 ) ∧ 𝐿 ∈ ( ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) limℂ 𝐶 ) ) ) ) |
15 |
8 14
|
mpbid |
⊢ ( 𝜑 → ( 𝐶 ∈ ( ( int ‘ ( 𝐽 ↾t 𝑇 ) ) ‘ 𝑌 ) ∧ 𝐿 ∈ ( ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) limℂ 𝐶 ) ) ) |
16 |
15
|
simpld |
⊢ ( 𝜑 → 𝐶 ∈ ( ( int ‘ ( 𝐽 ↾t 𝑇 ) ) ‘ 𝑌 ) ) |
17 |
5 1 2
|
dvcl |
⊢ ( ( 𝜑 ∧ ( 𝐺 ‘ 𝐶 ) ( 𝑆 D 𝐹 ) 𝐾 ) → 𝐾 ∈ ℂ ) |
18 |
7 17
|
mpdan |
⊢ ( 𝜑 → 𝐾 ∈ ℂ ) |
19 |
18
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → 𝐾 ∈ ℂ ) |
20 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → 𝐹 : 𝑋 ⟶ ℂ ) |
21 |
|
eldifi |
⊢ ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) → 𝑧 ∈ 𝑌 ) |
22 |
|
ffvelcdm |
⊢ ( ( 𝐺 : 𝑌 ⟶ 𝑋 ∧ 𝑧 ∈ 𝑌 ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝑋 ) |
23 |
3 21 22
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝑋 ) |
24 |
20 23
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) ∈ ℂ ) |
25 |
24
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) ∈ ℂ ) |
26 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → 𝐺 : 𝑌 ⟶ 𝑋 ) |
27 |
6 13 4
|
dvbss |
⊢ ( 𝜑 → dom ( 𝑇 D 𝐺 ) ⊆ 𝑌 ) |
28 |
|
reldv |
⊢ Rel ( 𝑇 D 𝐺 ) |
29 |
|
releldm |
⊢ ( ( Rel ( 𝑇 D 𝐺 ) ∧ 𝐶 ( 𝑇 D 𝐺 ) 𝐿 ) → 𝐶 ∈ dom ( 𝑇 D 𝐺 ) ) |
30 |
28 8 29
|
sylancr |
⊢ ( 𝜑 → 𝐶 ∈ dom ( 𝑇 D 𝐺 ) ) |
31 |
27 30
|
sseldd |
⊢ ( 𝜑 → 𝐶 ∈ 𝑌 ) |
32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → 𝐶 ∈ 𝑌 ) |
33 |
26 32
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( 𝐺 ‘ 𝐶 ) ∈ 𝑋 ) |
34 |
20 33
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ∈ ℂ ) |
35 |
34
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ∈ ℂ ) |
36 |
25 35
|
subcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ∈ ℂ ) |
37 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → 𝐺 : 𝑌 ⟶ ℂ ) |
38 |
21
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → 𝑧 ∈ 𝑌 ) |
39 |
37 38
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( 𝐺 ‘ 𝑧 ) ∈ ℂ ) |
40 |
31
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → 𝐶 ∈ 𝑌 ) |
41 |
37 40
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( 𝐺 ‘ 𝐶 ) ∈ ℂ ) |
42 |
39 41
|
subcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ∈ ℂ ) |
43 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) |
44 |
39 41
|
subeq0ad |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) = 0 ↔ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) ) |
45 |
44
|
necon3abid |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ≠ 0 ↔ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) ) |
46 |
43 45
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ≠ 0 ) |
47 |
36 42 46
|
divcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ∈ ℂ ) |
48 |
19 47
|
ifclda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) ∈ ℂ ) |
49 |
4 6
|
sstrd |
⊢ ( 𝜑 → 𝑌 ⊆ ℂ ) |
50 |
13 49 31
|
dvlem |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ∈ ℂ ) |
51 |
|
ssidd |
⊢ ( 𝜑 → ℂ ⊆ ℂ ) |
52 |
9
|
cnfldtopon |
⊢ 𝐽 ∈ ( TopOn ‘ ℂ ) |
53 |
|
txtopon |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ 𝐽 ∈ ( TopOn ‘ ℂ ) ) → ( 𝐽 ×t 𝐽 ) ∈ ( TopOn ‘ ( ℂ × ℂ ) ) ) |
54 |
52 52 53
|
mp2an |
⊢ ( 𝐽 ×t 𝐽 ) ∈ ( TopOn ‘ ( ℂ × ℂ ) ) |
55 |
54
|
toponrestid |
⊢ ( 𝐽 ×t 𝐽 ) = ( ( 𝐽 ×t 𝐽 ) ↾t ( ℂ × ℂ ) ) |
56 |
23
|
anim1i |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ( 𝐺 ‘ 𝑧 ) ≠ ( 𝐺 ‘ 𝐶 ) ) → ( ( 𝐺 ‘ 𝑧 ) ∈ 𝑋 ∧ ( 𝐺 ‘ 𝑧 ) ≠ ( 𝐺 ‘ 𝐶 ) ) ) |
57 |
|
eldifsn |
⊢ ( ( 𝐺 ‘ 𝑧 ) ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) ↔ ( ( 𝐺 ‘ 𝑧 ) ∈ 𝑋 ∧ ( 𝐺 ‘ 𝑧 ) ≠ ( 𝐺 ‘ 𝐶 ) ) ) |
58 |
56 57
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ( 𝐺 ‘ 𝑧 ) ≠ ( 𝐺 ‘ 𝐶 ) ) → ( 𝐺 ‘ 𝑧 ) ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) ) |
59 |
58
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ∧ ( 𝐺 ‘ 𝑧 ) ≠ ( 𝐺 ‘ 𝐶 ) ) ) → ( 𝐺 ‘ 𝑧 ) ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) ) |
60 |
|
eldifsni |
⊢ ( 𝑦 ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) → 𝑦 ≠ ( 𝐺 ‘ 𝐶 ) ) |
61 |
|
ifnefalse |
⊢ ( 𝑦 ≠ ( 𝐺 ‘ 𝐶 ) → if ( 𝑦 = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) = ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) |
62 |
60 61
|
syl |
⊢ ( 𝑦 ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) → if ( 𝑦 = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) = ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) |
63 |
62
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) ) → if ( 𝑦 = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) = ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) |
64 |
3 31
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐶 ) ∈ 𝑋 ) |
65 |
1 12 64
|
dvlem |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) ) → ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ∈ ℂ ) |
66 |
63 65
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) ) → if ( 𝑦 = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) ∈ ℂ ) |
67 |
|
limcresi |
⊢ ( 𝐺 limℂ 𝐶 ) ⊆ ( ( 𝐺 ↾ ( 𝑌 ∖ { 𝐶 } ) ) limℂ 𝐶 ) |
68 |
3
|
feqmptd |
⊢ ( 𝜑 → 𝐺 = ( 𝑧 ∈ 𝑌 ↦ ( 𝐺 ‘ 𝑧 ) ) ) |
69 |
68
|
reseq1d |
⊢ ( 𝜑 → ( 𝐺 ↾ ( 𝑌 ∖ { 𝐶 } ) ) = ( ( 𝑧 ∈ 𝑌 ↦ ( 𝐺 ‘ 𝑧 ) ) ↾ ( 𝑌 ∖ { 𝐶 } ) ) ) |
70 |
|
difss |
⊢ ( 𝑌 ∖ { 𝐶 } ) ⊆ 𝑌 |
71 |
|
resmpt |
⊢ ( ( 𝑌 ∖ { 𝐶 } ) ⊆ 𝑌 → ( ( 𝑧 ∈ 𝑌 ↦ ( 𝐺 ‘ 𝑧 ) ) ↾ ( 𝑌 ∖ { 𝐶 } ) ) = ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( 𝐺 ‘ 𝑧 ) ) ) |
72 |
70 71
|
ax-mp |
⊢ ( ( 𝑧 ∈ 𝑌 ↦ ( 𝐺 ‘ 𝑧 ) ) ↾ ( 𝑌 ∖ { 𝐶 } ) ) = ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( 𝐺 ‘ 𝑧 ) ) |
73 |
69 72
|
eqtrdi |
⊢ ( 𝜑 → ( 𝐺 ↾ ( 𝑌 ∖ { 𝐶 } ) ) = ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( 𝐺 ‘ 𝑧 ) ) ) |
74 |
73
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐺 ↾ ( 𝑌 ∖ { 𝐶 } ) ) limℂ 𝐶 ) = ( ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( 𝐺 ‘ 𝑧 ) ) limℂ 𝐶 ) ) |
75 |
67 74
|
sseqtrid |
⊢ ( 𝜑 → ( 𝐺 limℂ 𝐶 ) ⊆ ( ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( 𝐺 ‘ 𝑧 ) ) limℂ 𝐶 ) ) |
76 |
|
eqid |
⊢ ( 𝐽 ↾t 𝑌 ) = ( 𝐽 ↾t 𝑌 ) |
77 |
76 9
|
dvcnp2 |
⊢ ( ( ( 𝑇 ⊆ ℂ ∧ 𝐺 : 𝑌 ⟶ ℂ ∧ 𝑌 ⊆ 𝑇 ) ∧ 𝐶 ∈ dom ( 𝑇 D 𝐺 ) ) → 𝐺 ∈ ( ( ( 𝐽 ↾t 𝑌 ) CnP 𝐽 ) ‘ 𝐶 ) ) |
78 |
6 13 4 30 77
|
syl31anc |
⊢ ( 𝜑 → 𝐺 ∈ ( ( ( 𝐽 ↾t 𝑌 ) CnP 𝐽 ) ‘ 𝐶 ) ) |
79 |
9 76
|
cnplimc |
⊢ ( ( 𝑌 ⊆ ℂ ∧ 𝐶 ∈ 𝑌 ) → ( 𝐺 ∈ ( ( ( 𝐽 ↾t 𝑌 ) CnP 𝐽 ) ‘ 𝐶 ) ↔ ( 𝐺 : 𝑌 ⟶ ℂ ∧ ( 𝐺 ‘ 𝐶 ) ∈ ( 𝐺 limℂ 𝐶 ) ) ) ) |
80 |
49 31 79
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ∈ ( ( ( 𝐽 ↾t 𝑌 ) CnP 𝐽 ) ‘ 𝐶 ) ↔ ( 𝐺 : 𝑌 ⟶ ℂ ∧ ( 𝐺 ‘ 𝐶 ) ∈ ( 𝐺 limℂ 𝐶 ) ) ) ) |
81 |
78 80
|
mpbid |
⊢ ( 𝜑 → ( 𝐺 : 𝑌 ⟶ ℂ ∧ ( 𝐺 ‘ 𝐶 ) ∈ ( 𝐺 limℂ 𝐶 ) ) ) |
82 |
81
|
simprd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐶 ) ∈ ( 𝐺 limℂ 𝐶 ) ) |
83 |
75 82
|
sseldd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐶 ) ∈ ( ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( 𝐺 ‘ 𝑧 ) ) limℂ 𝐶 ) ) |
84 |
|
eqid |
⊢ ( 𝐽 ↾t 𝑆 ) = ( 𝐽 ↾t 𝑆 ) |
85 |
|
eqid |
⊢ ( 𝑦 ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) ↦ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) = ( 𝑦 ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) ↦ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) |
86 |
84 9 85 5 1 2
|
eldv |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝐶 ) ( 𝑆 D 𝐹 ) 𝐾 ↔ ( ( 𝐺 ‘ 𝐶 ) ∈ ( ( int ‘ ( 𝐽 ↾t 𝑆 ) ) ‘ 𝑋 ) ∧ 𝐾 ∈ ( ( 𝑦 ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) ↦ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) limℂ ( 𝐺 ‘ 𝐶 ) ) ) ) ) |
87 |
7 86
|
mpbid |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝐶 ) ∈ ( ( int ‘ ( 𝐽 ↾t 𝑆 ) ) ‘ 𝑋 ) ∧ 𝐾 ∈ ( ( 𝑦 ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) ↦ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) limℂ ( 𝐺 ‘ 𝐶 ) ) ) ) |
88 |
87
|
simprd |
⊢ ( 𝜑 → 𝐾 ∈ ( ( 𝑦 ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) ↦ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) limℂ ( 𝐺 ‘ 𝐶 ) ) ) |
89 |
62
|
mpteq2ia |
⊢ ( 𝑦 ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) ↦ if ( 𝑦 = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) ) = ( 𝑦 ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) ↦ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) |
90 |
89
|
oveq1i |
⊢ ( ( 𝑦 ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) ↦ if ( 𝑦 = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) ) limℂ ( 𝐺 ‘ 𝐶 ) ) = ( ( 𝑦 ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) ↦ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) limℂ ( 𝐺 ‘ 𝐶 ) ) |
91 |
88 90
|
eleqtrrdi |
⊢ ( 𝜑 → 𝐾 ∈ ( ( 𝑦 ∈ ( 𝑋 ∖ { ( 𝐺 ‘ 𝐶 ) } ) ↦ if ( 𝑦 = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) ) limℂ ( 𝐺 ‘ 𝐶 ) ) ) |
92 |
|
eqeq1 |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( 𝑦 = ( 𝐺 ‘ 𝐶 ) ↔ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) ) |
93 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) ) |
94 |
93
|
oveq1d |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) = ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) |
95 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) = ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) |
96 |
94 95
|
oveq12d |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) = ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) |
97 |
92 96
|
ifbieq2d |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → if ( 𝑦 = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑦 − ( 𝐺 ‘ 𝐶 ) ) ) ) = if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) ) |
98 |
|
iftrue |
⊢ ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) → if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) = 𝐾 ) |
99 |
98
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) ) → if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) = 𝐾 ) |
100 |
59 66 83 91 97 99
|
limcco |
⊢ ( 𝜑 → 𝐾 ∈ ( ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) ) limℂ 𝐶 ) ) |
101 |
15
|
simprd |
⊢ ( 𝜑 → 𝐿 ∈ ( ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) limℂ 𝐶 ) ) |
102 |
9
|
mulcn |
⊢ · ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) |
103 |
6 13 4
|
dvcl |
⊢ ( ( 𝜑 ∧ 𝐶 ( 𝑇 D 𝐺 ) 𝐿 ) → 𝐿 ∈ ℂ ) |
104 |
8 103
|
mpdan |
⊢ ( 𝜑 → 𝐿 ∈ ℂ ) |
105 |
18 104
|
opelxpd |
⊢ ( 𝜑 → 〈 𝐾 , 𝐿 〉 ∈ ( ℂ × ℂ ) ) |
106 |
54
|
toponunii |
⊢ ( ℂ × ℂ ) = ∪ ( 𝐽 ×t 𝐽 ) |
107 |
106
|
cncnpi |
⊢ ( ( · ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ∧ 〈 𝐾 , 𝐿 〉 ∈ ( ℂ × ℂ ) ) → · ∈ ( ( ( 𝐽 ×t 𝐽 ) CnP 𝐽 ) ‘ 〈 𝐾 , 𝐿 〉 ) ) |
108 |
102 105 107
|
sylancr |
⊢ ( 𝜑 → · ∈ ( ( ( 𝐽 ×t 𝐽 ) CnP 𝐽 ) ‘ 〈 𝐾 , 𝐿 〉 ) ) |
109 |
48 50 51 51 9 55 100 101 108
|
limccnp2 |
⊢ ( 𝜑 → ( 𝐾 · 𝐿 ) ∈ ( ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) · ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) ) limℂ 𝐶 ) ) |
110 |
|
oveq1 |
⊢ ( 𝐾 = if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) → ( 𝐾 · ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) = ( if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) · ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) ) |
111 |
110
|
eqeq1d |
⊢ ( 𝐾 = if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) → ( ( 𝐾 · ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) = ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑧 − 𝐶 ) ) ↔ ( if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) · ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) = ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑧 − 𝐶 ) ) ) ) |
112 |
|
oveq1 |
⊢ ( ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) = if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) → ( ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) · ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) = ( if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) · ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) ) |
113 |
112
|
eqeq1d |
⊢ ( ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) = if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) → ( ( ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) · ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) = ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑧 − 𝐶 ) ) ↔ ( if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) · ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) = ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑧 − 𝐶 ) ) ) ) |
114 |
19
|
mul01d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( 𝐾 · 0 ) = 0 ) |
115 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → 𝑋 ⊆ ℂ ) |
116 |
115 23
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( 𝐺 ‘ 𝑧 ) ∈ ℂ ) |
117 |
115 33
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( 𝐺 ‘ 𝐶 ) ∈ ℂ ) |
118 |
116 117
|
subeq0ad |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) = 0 ↔ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) ) |
119 |
118
|
biimpar |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) = 0 ) |
120 |
119
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) = ( 0 / ( 𝑧 − 𝐶 ) ) ) |
121 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → 𝑌 ⊆ ℂ ) |
122 |
21
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → 𝑧 ∈ 𝑌 ) |
123 |
121 122
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → 𝑧 ∈ ℂ ) |
124 |
121 32
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → 𝐶 ∈ ℂ ) |
125 |
123 124
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( 𝑧 − 𝐶 ) ∈ ℂ ) |
126 |
|
eldifsni |
⊢ ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) → 𝑧 ≠ 𝐶 ) |
127 |
126
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → 𝑧 ≠ 𝐶 ) |
128 |
123 124 127
|
subne0d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( 𝑧 − 𝐶 ) ≠ 0 ) |
129 |
125 128
|
div0d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( 0 / ( 𝑧 − 𝐶 ) ) = 0 ) |
130 |
129
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( 0 / ( 𝑧 − 𝐶 ) ) = 0 ) |
131 |
120 130
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) = 0 ) |
132 |
131
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( 𝐾 · ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) = ( 𝐾 · 0 ) ) |
133 |
|
fveq2 |
⊢ ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) |
134 |
24 34
|
subeq0ad |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) = 0 ↔ ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) |
135 |
133 134
|
imbitrrid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) = 0 ) ) |
136 |
135
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) = 0 ) |
137 |
136
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑧 − 𝐶 ) ) = ( 0 / ( 𝑧 − 𝐶 ) ) ) |
138 |
137 130
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑧 − 𝐶 ) ) = 0 ) |
139 |
114 132 138
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( 𝐾 · ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) = ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑧 − 𝐶 ) ) ) |
140 |
125
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( 𝑧 − 𝐶 ) ∈ ℂ ) |
141 |
128
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( 𝑧 − 𝐶 ) ≠ 0 ) |
142 |
36 42 140 46 141
|
dmdcan2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) ) → ( ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) · ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) = ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑧 − 𝐶 ) ) ) |
143 |
111 113 139 142
|
ifbothda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) · ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) = ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑧 − 𝐶 ) ) ) |
144 |
|
fvco3 |
⊢ ( ( 𝐺 : 𝑌 ⟶ 𝑋 ∧ 𝑧 ∈ 𝑌 ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑧 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) ) |
145 |
3 21 144
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑧 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) ) |
146 |
|
fvco3 |
⊢ ( ( 𝐺 : 𝑌 ⟶ 𝑋 ∧ 𝐶 ∈ 𝑌 ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝐶 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) |
147 |
3 31 146
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝐶 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) |
148 |
147
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝐶 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) |
149 |
145 148
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑧 ) − ( ( 𝐹 ∘ 𝐺 ) ‘ 𝐶 ) ) = ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) |
150 |
149
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑧 ) − ( ( 𝐹 ∘ 𝐺 ) ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) = ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( 𝑧 − 𝐶 ) ) ) |
151 |
143 150
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ) → ( if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) · ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) = ( ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑧 ) − ( ( 𝐹 ∘ 𝐺 ) ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) |
152 |
151
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) · ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) ) = ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑧 ) − ( ( 𝐹 ∘ 𝐺 ) ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) ) |
153 |
152
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( if ( ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐶 ) , 𝐾 , ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑧 ) ) − ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) / ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) ) ) · ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) ) limℂ 𝐶 ) = ( ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑧 ) − ( ( 𝐹 ∘ 𝐺 ) ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) limℂ 𝐶 ) ) |
154 |
109 153
|
eleqtrd |
⊢ ( 𝜑 → ( 𝐾 · 𝐿 ) ∈ ( ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑧 ) − ( ( 𝐹 ∘ 𝐺 ) ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) limℂ 𝐶 ) ) |
155 |
|
eqid |
⊢ ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑧 ) − ( ( 𝐹 ∘ 𝐺 ) ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) = ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑧 ) − ( ( 𝐹 ∘ 𝐺 ) ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) |
156 |
|
fco |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) → ( 𝐹 ∘ 𝐺 ) : 𝑌 ⟶ ℂ ) |
157 |
1 3 156
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) : 𝑌 ⟶ ℂ ) |
158 |
10 9 155 6 157 4
|
eldv |
⊢ ( 𝜑 → ( 𝐶 ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ( 𝐾 · 𝐿 ) ↔ ( 𝐶 ∈ ( ( int ‘ ( 𝐽 ↾t 𝑇 ) ) ‘ 𝑌 ) ∧ ( 𝐾 · 𝐿 ) ∈ ( ( 𝑧 ∈ ( 𝑌 ∖ { 𝐶 } ) ↦ ( ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑧 ) − ( ( 𝐹 ∘ 𝐺 ) ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) limℂ 𝐶 ) ) ) ) |
159 |
16 154 158
|
mpbir2and |
⊢ ( 𝜑 → 𝐶 ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ( 𝐾 · 𝐿 ) ) |