| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvcof.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
| 2 |
|
dvcof.t |
⊢ ( 𝜑 → 𝑇 ∈ { ℝ , ℂ } ) |
| 3 |
|
dvcof.f |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) |
| 4 |
|
dvcof.g |
⊢ ( 𝜑 → 𝐺 : 𝑌 ⟶ 𝑋 ) |
| 5 |
|
dvcof.df |
⊢ ( 𝜑 → dom ( 𝑆 D 𝐹 ) = 𝑋 ) |
| 6 |
|
dvcof.dg |
⊢ ( 𝜑 → dom ( 𝑇 D 𝐺 ) = 𝑌 ) |
| 7 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝐹 : 𝑋 ⟶ ℂ ) |
| 8 |
|
dvbsss |
⊢ dom ( 𝑆 D 𝐹 ) ⊆ 𝑆 |
| 9 |
5 8
|
eqsstrrdi |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑋 ⊆ 𝑆 ) |
| 11 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝐺 : 𝑌 ⟶ 𝑋 ) |
| 12 |
|
dvbsss |
⊢ dom ( 𝑇 D 𝐺 ) ⊆ 𝑇 |
| 13 |
6 12
|
eqsstrrdi |
⊢ ( 𝜑 → 𝑌 ⊆ 𝑇 ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑌 ⊆ 𝑇 ) |
| 15 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑆 ∈ { ℝ , ℂ } ) |
| 16 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑇 ∈ { ℝ , ℂ } ) |
| 17 |
4
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝑋 ) |
| 18 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → dom ( 𝑆 D 𝐹 ) = 𝑋 ) |
| 19 |
17 18
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝐺 ‘ 𝑥 ) ∈ dom ( 𝑆 D 𝐹 ) ) |
| 20 |
6
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ dom ( 𝑇 D 𝐺 ) ↔ 𝑥 ∈ 𝑌 ) ) |
| 21 |
20
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ∈ dom ( 𝑇 D 𝐺 ) ) |
| 22 |
7 10 11 14 15 16 19 21
|
dvco |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ‘ 𝑥 ) = ( ( ( 𝑆 D 𝐹 ) ‘ ( 𝐺 ‘ 𝑥 ) ) · ( ( 𝑇 D 𝐺 ) ‘ 𝑥 ) ) ) |
| 23 |
22
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑌 ↦ ( ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑌 ↦ ( ( ( 𝑆 D 𝐹 ) ‘ ( 𝐺 ‘ 𝑥 ) ) · ( ( 𝑇 D 𝐺 ) ‘ 𝑥 ) ) ) ) |
| 24 |
|
dvfg |
⊢ ( 𝑇 ∈ { ℝ , ℂ } → ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) : dom ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ⟶ ℂ ) |
| 25 |
2 24
|
syl |
⊢ ( 𝜑 → ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) : dom ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ⟶ ℂ ) |
| 26 |
|
recnprss |
⊢ ( 𝑇 ∈ { ℝ , ℂ } → 𝑇 ⊆ ℂ ) |
| 27 |
2 26
|
syl |
⊢ ( 𝜑 → 𝑇 ⊆ ℂ ) |
| 28 |
|
fco |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) → ( 𝐹 ∘ 𝐺 ) : 𝑌 ⟶ ℂ ) |
| 29 |
3 4 28
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) : 𝑌 ⟶ ℂ ) |
| 30 |
27 29 13
|
dvbss |
⊢ ( 𝜑 → dom ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ⊆ 𝑌 ) |
| 31 |
|
recnprss |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) |
| 32 |
15 31
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑆 ⊆ ℂ ) |
| 33 |
16 26
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑇 ⊆ ℂ ) |
| 34 |
|
dvfg |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) |
| 35 |
|
ffun |
⊢ ( ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ → Fun ( 𝑆 D 𝐹 ) ) |
| 36 |
|
funfvbrb |
⊢ ( Fun ( 𝑆 D 𝐹 ) → ( ( 𝐺 ‘ 𝑥 ) ∈ dom ( 𝑆 D 𝐹 ) ↔ ( 𝐺 ‘ 𝑥 ) ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 37 |
15 34 35 36
|
4syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( 𝐺 ‘ 𝑥 ) ∈ dom ( 𝑆 D 𝐹 ) ↔ ( 𝐺 ‘ 𝑥 ) ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 38 |
19 37
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝐺 ‘ 𝑥 ) ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ) |
| 39 |
|
dvfg |
⊢ ( 𝑇 ∈ { ℝ , ℂ } → ( 𝑇 D 𝐺 ) : dom ( 𝑇 D 𝐺 ) ⟶ ℂ ) |
| 40 |
|
ffun |
⊢ ( ( 𝑇 D 𝐺 ) : dom ( 𝑇 D 𝐺 ) ⟶ ℂ → Fun ( 𝑇 D 𝐺 ) ) |
| 41 |
|
funfvbrb |
⊢ ( Fun ( 𝑇 D 𝐺 ) → ( 𝑥 ∈ dom ( 𝑇 D 𝐺 ) ↔ 𝑥 ( 𝑇 D 𝐺 ) ( ( 𝑇 D 𝐺 ) ‘ 𝑥 ) ) ) |
| 42 |
16 39 40 41
|
4syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝑥 ∈ dom ( 𝑇 D 𝐺 ) ↔ 𝑥 ( 𝑇 D 𝐺 ) ( ( 𝑇 D 𝐺 ) ‘ 𝑥 ) ) ) |
| 43 |
21 42
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ( 𝑇 D 𝐺 ) ( ( 𝑇 D 𝐺 ) ‘ 𝑥 ) ) |
| 44 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 45 |
7 10 11 14 32 33 38 43 44
|
dvcobr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ( ( ( 𝑆 D 𝐹 ) ‘ ( 𝐺 ‘ 𝑥 ) ) · ( ( 𝑇 D 𝐺 ) ‘ 𝑥 ) ) ) |
| 46 |
|
reldv |
⊢ Rel ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) |
| 47 |
46
|
releldmi |
⊢ ( 𝑥 ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ( ( ( 𝑆 D 𝐹 ) ‘ ( 𝐺 ‘ 𝑥 ) ) · ( ( 𝑇 D 𝐺 ) ‘ 𝑥 ) ) → 𝑥 ∈ dom ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ) |
| 48 |
45 47
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ∈ dom ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ) |
| 49 |
30 48
|
eqelssd |
⊢ ( 𝜑 → dom ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) = 𝑌 ) |
| 50 |
49
|
feq2d |
⊢ ( 𝜑 → ( ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) : dom ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ⟶ ℂ ↔ ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) : 𝑌 ⟶ ℂ ) ) |
| 51 |
25 50
|
mpbid |
⊢ ( 𝜑 → ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) : 𝑌 ⟶ ℂ ) |
| 52 |
51
|
feqmptd |
⊢ ( 𝜑 → ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) = ( 𝑥 ∈ 𝑌 ↦ ( ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ‘ 𝑥 ) ) ) |
| 53 |
2 13
|
ssexd |
⊢ ( 𝜑 → 𝑌 ∈ V ) |
| 54 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( 𝑆 D 𝐹 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ∈ V ) |
| 55 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( 𝑇 D 𝐺 ) ‘ 𝑥 ) ∈ V ) |
| 56 |
4
|
feqmptd |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝑌 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
| 57 |
1 34
|
syl |
⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) |
| 58 |
5
|
feq2d |
⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ↔ ( 𝑆 D 𝐹 ) : 𝑋 ⟶ ℂ ) ) |
| 59 |
57 58
|
mpbid |
⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) : 𝑋 ⟶ ℂ ) |
| 60 |
59
|
feqmptd |
⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) = ( 𝑦 ∈ 𝑋 ↦ ( ( 𝑆 D 𝐹 ) ‘ 𝑦 ) ) ) |
| 61 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑥 ) → ( ( 𝑆 D 𝐹 ) ‘ 𝑦 ) = ( ( 𝑆 D 𝐹 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ) |
| 62 |
17 56 60 61
|
fmptco |
⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) ∘ 𝐺 ) = ( 𝑥 ∈ 𝑌 ↦ ( ( 𝑆 D 𝐹 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 63 |
2 39
|
syl |
⊢ ( 𝜑 → ( 𝑇 D 𝐺 ) : dom ( 𝑇 D 𝐺 ) ⟶ ℂ ) |
| 64 |
6
|
feq2d |
⊢ ( 𝜑 → ( ( 𝑇 D 𝐺 ) : dom ( 𝑇 D 𝐺 ) ⟶ ℂ ↔ ( 𝑇 D 𝐺 ) : 𝑌 ⟶ ℂ ) ) |
| 65 |
63 64
|
mpbid |
⊢ ( 𝜑 → ( 𝑇 D 𝐺 ) : 𝑌 ⟶ ℂ ) |
| 66 |
65
|
feqmptd |
⊢ ( 𝜑 → ( 𝑇 D 𝐺 ) = ( 𝑥 ∈ 𝑌 ↦ ( ( 𝑇 D 𝐺 ) ‘ 𝑥 ) ) ) |
| 67 |
53 54 55 62 66
|
offval2 |
⊢ ( 𝜑 → ( ( ( 𝑆 D 𝐹 ) ∘ 𝐺 ) ∘f · ( 𝑇 D 𝐺 ) ) = ( 𝑥 ∈ 𝑌 ↦ ( ( ( 𝑆 D 𝐹 ) ‘ ( 𝐺 ‘ 𝑥 ) ) · ( ( 𝑇 D 𝐺 ) ‘ 𝑥 ) ) ) ) |
| 68 |
23 52 67
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) = ( ( ( 𝑆 D 𝐹 ) ∘ 𝐺 ) ∘f · ( 𝑇 D 𝐺 ) ) ) |