Step |
Hyp |
Ref |
Expression |
1 |
|
dvcof.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
2 |
|
dvcof.t |
⊢ ( 𝜑 → 𝑇 ∈ { ℝ , ℂ } ) |
3 |
|
dvcof.f |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) |
4 |
|
dvcof.g |
⊢ ( 𝜑 → 𝐺 : 𝑌 ⟶ 𝑋 ) |
5 |
|
dvcof.df |
⊢ ( 𝜑 → dom ( 𝑆 D 𝐹 ) = 𝑋 ) |
6 |
|
dvcof.dg |
⊢ ( 𝜑 → dom ( 𝑇 D 𝐺 ) = 𝑌 ) |
7 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝐹 : 𝑋 ⟶ ℂ ) |
8 |
|
dvbsss |
⊢ dom ( 𝑆 D 𝐹 ) ⊆ 𝑆 |
9 |
5 8
|
eqsstrrdi |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) |
10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑋 ⊆ 𝑆 ) |
11 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝐺 : 𝑌 ⟶ 𝑋 ) |
12 |
|
dvbsss |
⊢ dom ( 𝑇 D 𝐺 ) ⊆ 𝑇 |
13 |
6 12
|
eqsstrrdi |
⊢ ( 𝜑 → 𝑌 ⊆ 𝑇 ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑌 ⊆ 𝑇 ) |
15 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑆 ∈ { ℝ , ℂ } ) |
16 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑇 ∈ { ℝ , ℂ } ) |
17 |
4
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝑋 ) |
18 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → dom ( 𝑆 D 𝐹 ) = 𝑋 ) |
19 |
17 18
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝐺 ‘ 𝑥 ) ∈ dom ( 𝑆 D 𝐹 ) ) |
20 |
6
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ dom ( 𝑇 D 𝐺 ) ↔ 𝑥 ∈ 𝑌 ) ) |
21 |
20
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ∈ dom ( 𝑇 D 𝐺 ) ) |
22 |
7 10 11 14 15 16 19 21
|
dvco |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ‘ 𝑥 ) = ( ( ( 𝑆 D 𝐹 ) ‘ ( 𝐺 ‘ 𝑥 ) ) · ( ( 𝑇 D 𝐺 ) ‘ 𝑥 ) ) ) |
23 |
22
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑌 ↦ ( ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑌 ↦ ( ( ( 𝑆 D 𝐹 ) ‘ ( 𝐺 ‘ 𝑥 ) ) · ( ( 𝑇 D 𝐺 ) ‘ 𝑥 ) ) ) ) |
24 |
|
dvfg |
⊢ ( 𝑇 ∈ { ℝ , ℂ } → ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) : dom ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ⟶ ℂ ) |
25 |
2 24
|
syl |
⊢ ( 𝜑 → ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) : dom ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ⟶ ℂ ) |
26 |
|
recnprss |
⊢ ( 𝑇 ∈ { ℝ , ℂ } → 𝑇 ⊆ ℂ ) |
27 |
2 26
|
syl |
⊢ ( 𝜑 → 𝑇 ⊆ ℂ ) |
28 |
|
fco |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) → ( 𝐹 ∘ 𝐺 ) : 𝑌 ⟶ ℂ ) |
29 |
3 4 28
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) : 𝑌 ⟶ ℂ ) |
30 |
27 29 13
|
dvbss |
⊢ ( 𝜑 → dom ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ⊆ 𝑌 ) |
31 |
|
recnprss |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) |
32 |
15 31
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑆 ⊆ ℂ ) |
33 |
16 26
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑇 ⊆ ℂ ) |
34 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( 𝑆 D 𝐹 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ∈ V ) |
35 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( 𝑇 D 𝐺 ) ‘ 𝑥 ) ∈ V ) |
36 |
|
dvfg |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) |
37 |
|
ffun |
⊢ ( ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ → Fun ( 𝑆 D 𝐹 ) ) |
38 |
|
funfvbrb |
⊢ ( Fun ( 𝑆 D 𝐹 ) → ( ( 𝐺 ‘ 𝑥 ) ∈ dom ( 𝑆 D 𝐹 ) ↔ ( 𝐺 ‘ 𝑥 ) ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) |
39 |
15 36 37 38
|
4syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( 𝐺 ‘ 𝑥 ) ∈ dom ( 𝑆 D 𝐹 ) ↔ ( 𝐺 ‘ 𝑥 ) ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) |
40 |
19 39
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝐺 ‘ 𝑥 ) ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ) |
41 |
|
dvfg |
⊢ ( 𝑇 ∈ { ℝ , ℂ } → ( 𝑇 D 𝐺 ) : dom ( 𝑇 D 𝐺 ) ⟶ ℂ ) |
42 |
|
ffun |
⊢ ( ( 𝑇 D 𝐺 ) : dom ( 𝑇 D 𝐺 ) ⟶ ℂ → Fun ( 𝑇 D 𝐺 ) ) |
43 |
|
funfvbrb |
⊢ ( Fun ( 𝑇 D 𝐺 ) → ( 𝑥 ∈ dom ( 𝑇 D 𝐺 ) ↔ 𝑥 ( 𝑇 D 𝐺 ) ( ( 𝑇 D 𝐺 ) ‘ 𝑥 ) ) ) |
44 |
16 41 42 43
|
4syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝑥 ∈ dom ( 𝑇 D 𝐺 ) ↔ 𝑥 ( 𝑇 D 𝐺 ) ( ( 𝑇 D 𝐺 ) ‘ 𝑥 ) ) ) |
45 |
21 44
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ( 𝑇 D 𝐺 ) ( ( 𝑇 D 𝐺 ) ‘ 𝑥 ) ) |
46 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
47 |
7 10 11 14 32 33 34 35 40 45 46
|
dvcobr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ( ( ( 𝑆 D 𝐹 ) ‘ ( 𝐺 ‘ 𝑥 ) ) · ( ( 𝑇 D 𝐺 ) ‘ 𝑥 ) ) ) |
48 |
|
reldv |
⊢ Rel ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) |
49 |
48
|
releldmi |
⊢ ( 𝑥 ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ( ( ( 𝑆 D 𝐹 ) ‘ ( 𝐺 ‘ 𝑥 ) ) · ( ( 𝑇 D 𝐺 ) ‘ 𝑥 ) ) → 𝑥 ∈ dom ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ) |
50 |
47 49
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ∈ dom ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ) |
51 |
30 50
|
eqelssd |
⊢ ( 𝜑 → dom ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) = 𝑌 ) |
52 |
51
|
feq2d |
⊢ ( 𝜑 → ( ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) : dom ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ⟶ ℂ ↔ ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) : 𝑌 ⟶ ℂ ) ) |
53 |
25 52
|
mpbid |
⊢ ( 𝜑 → ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) : 𝑌 ⟶ ℂ ) |
54 |
53
|
feqmptd |
⊢ ( 𝜑 → ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) = ( 𝑥 ∈ 𝑌 ↦ ( ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ‘ 𝑥 ) ) ) |
55 |
2 13
|
ssexd |
⊢ ( 𝜑 → 𝑌 ∈ V ) |
56 |
4
|
feqmptd |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝑌 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
57 |
1 36
|
syl |
⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) |
58 |
5
|
feq2d |
⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ↔ ( 𝑆 D 𝐹 ) : 𝑋 ⟶ ℂ ) ) |
59 |
57 58
|
mpbid |
⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) : 𝑋 ⟶ ℂ ) |
60 |
59
|
feqmptd |
⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) = ( 𝑦 ∈ 𝑋 ↦ ( ( 𝑆 D 𝐹 ) ‘ 𝑦 ) ) ) |
61 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑥 ) → ( ( 𝑆 D 𝐹 ) ‘ 𝑦 ) = ( ( 𝑆 D 𝐹 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ) |
62 |
17 56 60 61
|
fmptco |
⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) ∘ 𝐺 ) = ( 𝑥 ∈ 𝑌 ↦ ( ( 𝑆 D 𝐹 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) |
63 |
2 41
|
syl |
⊢ ( 𝜑 → ( 𝑇 D 𝐺 ) : dom ( 𝑇 D 𝐺 ) ⟶ ℂ ) |
64 |
6
|
feq2d |
⊢ ( 𝜑 → ( ( 𝑇 D 𝐺 ) : dom ( 𝑇 D 𝐺 ) ⟶ ℂ ↔ ( 𝑇 D 𝐺 ) : 𝑌 ⟶ ℂ ) ) |
65 |
63 64
|
mpbid |
⊢ ( 𝜑 → ( 𝑇 D 𝐺 ) : 𝑌 ⟶ ℂ ) |
66 |
65
|
feqmptd |
⊢ ( 𝜑 → ( 𝑇 D 𝐺 ) = ( 𝑥 ∈ 𝑌 ↦ ( ( 𝑇 D 𝐺 ) ‘ 𝑥 ) ) ) |
67 |
55 34 35 62 66
|
offval2 |
⊢ ( 𝜑 → ( ( ( 𝑆 D 𝐹 ) ∘ 𝐺 ) ∘f · ( 𝑇 D 𝐺 ) ) = ( 𝑥 ∈ 𝑌 ↦ ( ( ( 𝑆 D 𝐹 ) ‘ ( 𝐺 ‘ 𝑥 ) ) · ( ( 𝑇 D 𝐺 ) ‘ 𝑥 ) ) ) ) |
68 |
23 54 67
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) = ( ( ( 𝑆 D 𝐹 ) ∘ 𝐺 ) ∘f · ( 𝑇 D 𝐺 ) ) ) |