| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fconst6g |
⊢ ( 𝐴 ∈ ℂ → ( ℂ × { 𝐴 } ) : ℂ ⟶ ℂ ) |
| 2 |
|
simpr2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) ) → 𝑧 ∈ ℂ ) |
| 3 |
|
fvconst2g |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( ℂ × { 𝐴 } ) ‘ 𝑧 ) = 𝐴 ) |
| 4 |
2 3
|
syldan |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) ) → ( ( ℂ × { 𝐴 } ) ‘ 𝑧 ) = 𝐴 ) |
| 5 |
|
fvconst2g |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( ( ℂ × { 𝐴 } ) ‘ 𝑥 ) = 𝐴 ) |
| 6 |
5
|
3ad2antr1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) ) → ( ( ℂ × { 𝐴 } ) ‘ 𝑥 ) = 𝐴 ) |
| 7 |
4 6
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) ) → ( ( ( ℂ × { 𝐴 } ) ‘ 𝑧 ) − ( ( ℂ × { 𝐴 } ) ‘ 𝑥 ) ) = ( 𝐴 − 𝐴 ) ) |
| 8 |
|
subid |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 − 𝐴 ) = 0 ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) ) → ( 𝐴 − 𝐴 ) = 0 ) |
| 10 |
7 9
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) ) → ( ( ( ℂ × { 𝐴 } ) ‘ 𝑧 ) − ( ( ℂ × { 𝐴 } ) ‘ 𝑥 ) ) = 0 ) |
| 11 |
10
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) ) → ( ( ( ( ℂ × { 𝐴 } ) ‘ 𝑧 ) − ( ( ℂ × { 𝐴 } ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) = ( 0 / ( 𝑧 − 𝑥 ) ) ) |
| 12 |
|
simpr1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) ) → 𝑥 ∈ ℂ ) |
| 13 |
2 12
|
subcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) ) → ( 𝑧 − 𝑥 ) ∈ ℂ ) |
| 14 |
|
simpr3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) ) → 𝑧 ≠ 𝑥 ) |
| 15 |
2 12 14
|
subne0d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) ) → ( 𝑧 − 𝑥 ) ≠ 0 ) |
| 16 |
13 15
|
div0d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) ) → ( 0 / ( 𝑧 − 𝑥 ) ) = 0 ) |
| 17 |
11 16
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) ) → ( ( ( ( ℂ × { 𝐴 } ) ‘ 𝑧 ) − ( ( ℂ × { 𝐴 } ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) = 0 ) |
| 18 |
|
0cn |
⊢ 0 ∈ ℂ |
| 19 |
1 17 18
|
dvidlem |
⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( ℂ × { 𝐴 } ) ) = ( ℂ × { 0 } ) ) |