Step |
Hyp |
Ref |
Expression |
1 |
|
cnelprrecn |
⊢ ℂ ∈ { ℝ , ℂ } |
2 |
1
|
a1i |
⊢ ( 𝐴 ∈ ℝ+ → ℂ ∈ { ℝ , ℂ } ) |
3 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℂ ) → 𝑥 ∈ ℂ ) |
4 |
|
relogcl |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ ) |
5 |
4
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℂ ) → ( log ‘ 𝐴 ) ∈ ℝ ) |
6 |
5
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℂ ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
7 |
3 6
|
mulcld |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℂ ) → ( 𝑥 · ( log ‘ 𝐴 ) ) ∈ ℂ ) |
8 |
|
efcl |
⊢ ( 𝑦 ∈ ℂ → ( exp ‘ 𝑦 ) ∈ ℂ ) |
9 |
8
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑦 ∈ ℂ ) → ( exp ‘ 𝑦 ) ∈ ℂ ) |
10 |
3 6
|
mulcomd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℂ ) → ( 𝑥 · ( log ‘ 𝐴 ) ) = ( ( log ‘ 𝐴 ) · 𝑥 ) ) |
11 |
10
|
mpteq2dva |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝑥 ∈ ℂ ↦ ( 𝑥 · ( log ‘ 𝐴 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( log ‘ 𝐴 ) · 𝑥 ) ) ) |
12 |
11
|
oveq2d |
⊢ ( 𝐴 ∈ ℝ+ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 · ( log ‘ 𝐴 ) ) ) ) = ( ℂ D ( 𝑥 ∈ ℂ ↦ ( ( log ‘ 𝐴 ) · 𝑥 ) ) ) ) |
13 |
|
1cnd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℂ ) → 1 ∈ ℂ ) |
14 |
2
|
dvmptid |
⊢ ( 𝐴 ∈ ℝ+ → ( ℂ D ( 𝑥 ∈ ℂ ↦ 𝑥 ) ) = ( 𝑥 ∈ ℂ ↦ 1 ) ) |
15 |
4
|
recnd |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℂ ) |
16 |
2 3 13 14 15
|
dvmptcmul |
⊢ ( 𝐴 ∈ ℝ+ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( ( log ‘ 𝐴 ) · 𝑥 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( log ‘ 𝐴 ) · 1 ) ) ) |
17 |
6
|
mulid1d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℂ ) → ( ( log ‘ 𝐴 ) · 1 ) = ( log ‘ 𝐴 ) ) |
18 |
17
|
mpteq2dva |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝑥 ∈ ℂ ↦ ( ( log ‘ 𝐴 ) · 1 ) ) = ( 𝑥 ∈ ℂ ↦ ( log ‘ 𝐴 ) ) ) |
19 |
12 16 18
|
3eqtrd |
⊢ ( 𝐴 ∈ ℝ+ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 · ( log ‘ 𝐴 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( log ‘ 𝐴 ) ) ) |
20 |
|
dvef |
⊢ ( ℂ D exp ) = exp |
21 |
|
eff |
⊢ exp : ℂ ⟶ ℂ |
22 |
21
|
a1i |
⊢ ( 𝐴 ∈ ℝ+ → exp : ℂ ⟶ ℂ ) |
23 |
22
|
feqmptd |
⊢ ( 𝐴 ∈ ℝ+ → exp = ( 𝑦 ∈ ℂ ↦ ( exp ‘ 𝑦 ) ) ) |
24 |
23
|
eqcomd |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝑦 ∈ ℂ ↦ ( exp ‘ 𝑦 ) ) = exp ) |
25 |
24
|
oveq2d |
⊢ ( 𝐴 ∈ ℝ+ → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( exp ‘ 𝑦 ) ) ) = ( ℂ D exp ) ) |
26 |
20 25 24
|
3eqtr4a |
⊢ ( 𝐴 ∈ ℝ+ → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( exp ‘ 𝑦 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( exp ‘ 𝑦 ) ) ) |
27 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑥 · ( log ‘ 𝐴 ) ) → ( exp ‘ 𝑦 ) = ( exp ‘ ( 𝑥 · ( log ‘ 𝐴 ) ) ) ) |
28 |
2 2 7 5 9 9 19 26 27 27
|
dvmptco |
⊢ ( 𝐴 ∈ ℝ+ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( exp ‘ ( 𝑥 · ( log ‘ 𝐴 ) ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( exp ‘ ( 𝑥 · ( log ‘ 𝐴 ) ) ) · ( log ‘ 𝐴 ) ) ) ) |
29 |
|
rpcn |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ ) |
30 |
29
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
31 |
|
rpne0 |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ≠ 0 ) |
32 |
31
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℂ ) → 𝐴 ≠ 0 ) |
33 |
30 32 3
|
cxpefd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝑥 ) = ( exp ‘ ( 𝑥 · ( log ‘ 𝐴 ) ) ) ) |
34 |
33
|
mpteq2dva |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝑥 ∈ ℂ ↦ ( 𝐴 ↑𝑐 𝑥 ) ) = ( 𝑥 ∈ ℂ ↦ ( exp ‘ ( 𝑥 · ( log ‘ 𝐴 ) ) ) ) ) |
35 |
34
|
oveq2d |
⊢ ( 𝐴 ∈ ℝ+ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 ↑𝑐 𝑥 ) ) ) = ( ℂ D ( 𝑥 ∈ ℂ ↦ ( exp ‘ ( 𝑥 · ( log ‘ 𝐴 ) ) ) ) ) ) |
36 |
30 3
|
cxpcld |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝑥 ) ∈ ℂ ) |
37 |
6 36
|
mulcomd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℂ ) → ( ( log ‘ 𝐴 ) · ( 𝐴 ↑𝑐 𝑥 ) ) = ( ( 𝐴 ↑𝑐 𝑥 ) · ( log ‘ 𝐴 ) ) ) |
38 |
33
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℂ ) → ( ( 𝐴 ↑𝑐 𝑥 ) · ( log ‘ 𝐴 ) ) = ( ( exp ‘ ( 𝑥 · ( log ‘ 𝐴 ) ) ) · ( log ‘ 𝐴 ) ) ) |
39 |
37 38
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℂ ) → ( ( log ‘ 𝐴 ) · ( 𝐴 ↑𝑐 𝑥 ) ) = ( ( exp ‘ ( 𝑥 · ( log ‘ 𝐴 ) ) ) · ( log ‘ 𝐴 ) ) ) |
40 |
39
|
mpteq2dva |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝑥 ∈ ℂ ↦ ( ( log ‘ 𝐴 ) · ( 𝐴 ↑𝑐 𝑥 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( exp ‘ ( 𝑥 · ( log ‘ 𝐴 ) ) ) · ( log ‘ 𝐴 ) ) ) ) |
41 |
28 35 40
|
3eqtr4d |
⊢ ( 𝐴 ∈ ℝ+ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴 ↑𝑐 𝑥 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( log ‘ 𝐴 ) · ( 𝐴 ↑𝑐 𝑥 ) ) ) ) |