Metamath Proof Explorer


Theorem dvcxp2

Description: The derivative of a complex power with respect to the second argument. (Contributed by Mario Carneiro, 24-Feb-2015)

Ref Expression
Assertion dvcxp2 ( 𝐴 ∈ ℝ+ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴𝑐 𝑥 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( log ‘ 𝐴 ) · ( 𝐴𝑐 𝑥 ) ) ) )

Proof

Step Hyp Ref Expression
1 cnelprrecn ℂ ∈ { ℝ , ℂ }
2 1 a1i ( 𝐴 ∈ ℝ+ → ℂ ∈ { ℝ , ℂ } )
3 simpr ( ( 𝐴 ∈ ℝ+𝑥 ∈ ℂ ) → 𝑥 ∈ ℂ )
4 relogcl ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ )
5 4 adantr ( ( 𝐴 ∈ ℝ+𝑥 ∈ ℂ ) → ( log ‘ 𝐴 ) ∈ ℝ )
6 5 recnd ( ( 𝐴 ∈ ℝ+𝑥 ∈ ℂ ) → ( log ‘ 𝐴 ) ∈ ℂ )
7 3 6 mulcld ( ( 𝐴 ∈ ℝ+𝑥 ∈ ℂ ) → ( 𝑥 · ( log ‘ 𝐴 ) ) ∈ ℂ )
8 efcl ( 𝑦 ∈ ℂ → ( exp ‘ 𝑦 ) ∈ ℂ )
9 8 adantl ( ( 𝐴 ∈ ℝ+𝑦 ∈ ℂ ) → ( exp ‘ 𝑦 ) ∈ ℂ )
10 3 6 mulcomd ( ( 𝐴 ∈ ℝ+𝑥 ∈ ℂ ) → ( 𝑥 · ( log ‘ 𝐴 ) ) = ( ( log ‘ 𝐴 ) · 𝑥 ) )
11 10 mpteq2dva ( 𝐴 ∈ ℝ+ → ( 𝑥 ∈ ℂ ↦ ( 𝑥 · ( log ‘ 𝐴 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( log ‘ 𝐴 ) · 𝑥 ) ) )
12 11 oveq2d ( 𝐴 ∈ ℝ+ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 · ( log ‘ 𝐴 ) ) ) ) = ( ℂ D ( 𝑥 ∈ ℂ ↦ ( ( log ‘ 𝐴 ) · 𝑥 ) ) ) )
13 1cnd ( ( 𝐴 ∈ ℝ+𝑥 ∈ ℂ ) → 1 ∈ ℂ )
14 2 dvmptid ( 𝐴 ∈ ℝ+ → ( ℂ D ( 𝑥 ∈ ℂ ↦ 𝑥 ) ) = ( 𝑥 ∈ ℂ ↦ 1 ) )
15 4 recnd ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℂ )
16 2 3 13 14 15 dvmptcmul ( 𝐴 ∈ ℝ+ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( ( log ‘ 𝐴 ) · 𝑥 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( log ‘ 𝐴 ) · 1 ) ) )
17 6 mulid1d ( ( 𝐴 ∈ ℝ+𝑥 ∈ ℂ ) → ( ( log ‘ 𝐴 ) · 1 ) = ( log ‘ 𝐴 ) )
18 17 mpteq2dva ( 𝐴 ∈ ℝ+ → ( 𝑥 ∈ ℂ ↦ ( ( log ‘ 𝐴 ) · 1 ) ) = ( 𝑥 ∈ ℂ ↦ ( log ‘ 𝐴 ) ) )
19 12 16 18 3eqtrd ( 𝐴 ∈ ℝ+ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 · ( log ‘ 𝐴 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( log ‘ 𝐴 ) ) )
20 dvef ( ℂ D exp ) = exp
21 eff exp : ℂ ⟶ ℂ
22 21 a1i ( 𝐴 ∈ ℝ+ → exp : ℂ ⟶ ℂ )
23 22 feqmptd ( 𝐴 ∈ ℝ+ → exp = ( 𝑦 ∈ ℂ ↦ ( exp ‘ 𝑦 ) ) )
24 23 eqcomd ( 𝐴 ∈ ℝ+ → ( 𝑦 ∈ ℂ ↦ ( exp ‘ 𝑦 ) ) = exp )
25 24 oveq2d ( 𝐴 ∈ ℝ+ → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( exp ‘ 𝑦 ) ) ) = ( ℂ D exp ) )
26 20 25 24 3eqtr4a ( 𝐴 ∈ ℝ+ → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( exp ‘ 𝑦 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( exp ‘ 𝑦 ) ) )
27 fveq2 ( 𝑦 = ( 𝑥 · ( log ‘ 𝐴 ) ) → ( exp ‘ 𝑦 ) = ( exp ‘ ( 𝑥 · ( log ‘ 𝐴 ) ) ) )
28 2 2 7 5 9 9 19 26 27 27 dvmptco ( 𝐴 ∈ ℝ+ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( exp ‘ ( 𝑥 · ( log ‘ 𝐴 ) ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( exp ‘ ( 𝑥 · ( log ‘ 𝐴 ) ) ) · ( log ‘ 𝐴 ) ) ) )
29 rpcn ( 𝐴 ∈ ℝ+𝐴 ∈ ℂ )
30 29 adantr ( ( 𝐴 ∈ ℝ+𝑥 ∈ ℂ ) → 𝐴 ∈ ℂ )
31 rpne0 ( 𝐴 ∈ ℝ+𝐴 ≠ 0 )
32 31 adantr ( ( 𝐴 ∈ ℝ+𝑥 ∈ ℂ ) → 𝐴 ≠ 0 )
33 30 32 3 cxpefd ( ( 𝐴 ∈ ℝ+𝑥 ∈ ℂ ) → ( 𝐴𝑐 𝑥 ) = ( exp ‘ ( 𝑥 · ( log ‘ 𝐴 ) ) ) )
34 33 mpteq2dva ( 𝐴 ∈ ℝ+ → ( 𝑥 ∈ ℂ ↦ ( 𝐴𝑐 𝑥 ) ) = ( 𝑥 ∈ ℂ ↦ ( exp ‘ ( 𝑥 · ( log ‘ 𝐴 ) ) ) ) )
35 34 oveq2d ( 𝐴 ∈ ℝ+ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴𝑐 𝑥 ) ) ) = ( ℂ D ( 𝑥 ∈ ℂ ↦ ( exp ‘ ( 𝑥 · ( log ‘ 𝐴 ) ) ) ) ) )
36 30 3 cxpcld ( ( 𝐴 ∈ ℝ+𝑥 ∈ ℂ ) → ( 𝐴𝑐 𝑥 ) ∈ ℂ )
37 6 36 mulcomd ( ( 𝐴 ∈ ℝ+𝑥 ∈ ℂ ) → ( ( log ‘ 𝐴 ) · ( 𝐴𝑐 𝑥 ) ) = ( ( 𝐴𝑐 𝑥 ) · ( log ‘ 𝐴 ) ) )
38 33 oveq1d ( ( 𝐴 ∈ ℝ+𝑥 ∈ ℂ ) → ( ( 𝐴𝑐 𝑥 ) · ( log ‘ 𝐴 ) ) = ( ( exp ‘ ( 𝑥 · ( log ‘ 𝐴 ) ) ) · ( log ‘ 𝐴 ) ) )
39 37 38 eqtrd ( ( 𝐴 ∈ ℝ+𝑥 ∈ ℂ ) → ( ( log ‘ 𝐴 ) · ( 𝐴𝑐 𝑥 ) ) = ( ( exp ‘ ( 𝑥 · ( log ‘ 𝐴 ) ) ) · ( log ‘ 𝐴 ) ) )
40 39 mpteq2dva ( 𝐴 ∈ ℝ+ → ( 𝑥 ∈ ℂ ↦ ( ( log ‘ 𝐴 ) · ( 𝐴𝑐 𝑥 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( exp ‘ ( 𝑥 · ( log ‘ 𝐴 ) ) ) · ( log ‘ 𝐴 ) ) ) )
41 28 35 40 3eqtr4d ( 𝐴 ∈ ℝ+ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝐴𝑐 𝑥 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( log ‘ 𝐴 ) · ( 𝐴𝑐 𝑥 ) ) ) )