Metamath Proof Explorer


Theorem dvdmsscn

Description: X is a subset of CC . This statement is very often used when computing derivatives. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses dvdmsscn.s ( 𝜑𝑆 ∈ { ℝ , ℂ } )
dvdmsscn.x ( 𝜑𝑋 ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) )
Assertion dvdmsscn ( 𝜑𝑋 ⊆ ℂ )

Proof

Step Hyp Ref Expression
1 dvdmsscn.s ( 𝜑𝑆 ∈ { ℝ , ℂ } )
2 dvdmsscn.x ( 𝜑𝑋 ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) )
3 restsspw ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ⊆ 𝒫 𝑆
4 3 2 sselid ( 𝜑𝑋 ∈ 𝒫 𝑆 )
5 elpwi ( 𝑋 ∈ 𝒫 𝑆𝑋𝑆 )
6 4 5 syl ( 𝜑𝑋𝑆 )
7 recnprss ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ )
8 1 7 syl ( 𝜑𝑆 ⊆ ℂ )
9 6 8 sstrd ( 𝜑𝑋 ⊆ ℂ )