Metamath Proof Explorer


Theorem dvds1

Description: The only nonnegative integer that divides 1 is 1. (Contributed by Mario Carneiro, 2-Jul-2015)

Ref Expression
Assertion dvds1 ( 𝑀 ∈ ℕ0 → ( 𝑀 ∥ 1 ↔ 𝑀 = 1 ) )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝑀 ∈ ℕ0𝑀 ∥ 1 ) → 𝑀 ∈ ℕ0 )
2 1nn0 1 ∈ ℕ0
3 2 a1i ( ( 𝑀 ∈ ℕ0𝑀 ∥ 1 ) → 1 ∈ ℕ0 )
4 simpr ( ( 𝑀 ∈ ℕ0𝑀 ∥ 1 ) → 𝑀 ∥ 1 )
5 nn0z ( 𝑀 ∈ ℕ0𝑀 ∈ ℤ )
6 1dvds ( 𝑀 ∈ ℤ → 1 ∥ 𝑀 )
7 5 6 syl ( 𝑀 ∈ ℕ0 → 1 ∥ 𝑀 )
8 7 adantr ( ( 𝑀 ∈ ℕ0𝑀 ∥ 1 ) → 1 ∥ 𝑀 )
9 dvdseq ( ( ( 𝑀 ∈ ℕ0 ∧ 1 ∈ ℕ0 ) ∧ ( 𝑀 ∥ 1 ∧ 1 ∥ 𝑀 ) ) → 𝑀 = 1 )
10 1 3 4 8 9 syl22anc ( ( 𝑀 ∈ ℕ0𝑀 ∥ 1 ) → 𝑀 = 1 )
11 10 ex ( 𝑀 ∈ ℕ0 → ( 𝑀 ∥ 1 → 𝑀 = 1 ) )
12 id ( 𝑀 = 1 → 𝑀 = 1 )
13 1z 1 ∈ ℤ
14 iddvds ( 1 ∈ ℤ → 1 ∥ 1 )
15 13 14 ax-mp 1 ∥ 1
16 12 15 eqbrtrdi ( 𝑀 = 1 → 𝑀 ∥ 1 )
17 11 16 impbid1 ( 𝑀 ∈ ℕ0 → ( 𝑀 ∥ 1 ↔ 𝑀 = 1 ) )