Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ∥ 1 ) → 𝑀 ∈ ℕ0 ) |
2 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
3 |
2
|
a1i |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ∥ 1 ) → 1 ∈ ℕ0 ) |
4 |
|
simpr |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ∥ 1 ) → 𝑀 ∥ 1 ) |
5 |
|
nn0z |
⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℤ ) |
6 |
|
1dvds |
⊢ ( 𝑀 ∈ ℤ → 1 ∥ 𝑀 ) |
7 |
5 6
|
syl |
⊢ ( 𝑀 ∈ ℕ0 → 1 ∥ 𝑀 ) |
8 |
7
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ∥ 1 ) → 1 ∥ 𝑀 ) |
9 |
|
dvdseq |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 1 ∈ ℕ0 ) ∧ ( 𝑀 ∥ 1 ∧ 1 ∥ 𝑀 ) ) → 𝑀 = 1 ) |
10 |
1 3 4 8 9
|
syl22anc |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ∥ 1 ) → 𝑀 = 1 ) |
11 |
10
|
ex |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 ∥ 1 → 𝑀 = 1 ) ) |
12 |
|
id |
⊢ ( 𝑀 = 1 → 𝑀 = 1 ) |
13 |
|
1z |
⊢ 1 ∈ ℤ |
14 |
|
iddvds |
⊢ ( 1 ∈ ℤ → 1 ∥ 1 ) |
15 |
13 14
|
ax-mp |
⊢ 1 ∥ 1 |
16 |
12 15
|
eqbrtrdi |
⊢ ( 𝑀 = 1 → 𝑀 ∥ 1 ) |
17 |
11 16
|
impbid1 |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 ∥ 1 ↔ 𝑀 = 1 ) ) |