Metamath Proof Explorer


Theorem dvds2subd

Description: Deduction form of dvds2sub . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses dvds2subd.k ( 𝜑𝐾 ∈ ℤ )
dvds2subd.m ( 𝜑𝑀 ∈ ℤ )
dvds2subd.n ( 𝜑𝑁 ∈ ℤ )
dvds2subd.1 ( 𝜑𝐾𝑀 )
dvds2subd.2 ( 𝜑𝐾𝑁 )
Assertion dvds2subd ( 𝜑𝐾 ∥ ( 𝑀𝑁 ) )

Proof

Step Hyp Ref Expression
1 dvds2subd.k ( 𝜑𝐾 ∈ ℤ )
2 dvds2subd.m ( 𝜑𝑀 ∈ ℤ )
3 dvds2subd.n ( 𝜑𝑁 ∈ ℤ )
4 dvds2subd.1 ( 𝜑𝐾𝑀 )
5 dvds2subd.2 ( 𝜑𝐾𝑁 )
6 dvds2sub ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾𝑀𝐾𝑁 ) → 𝐾 ∥ ( 𝑀𝑁 ) ) )
7 1 2 3 6 syl3anc ( 𝜑 → ( ( 𝐾𝑀𝐾𝑁 ) → 𝐾 ∥ ( 𝑀𝑁 ) ) )
8 4 5 7 mp2and ( 𝜑𝐾 ∥ ( 𝑀𝑁 ) )