| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvdszrcl |
⊢ ( 𝑀 ∥ 𝑁 → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
| 2 |
|
simpr |
⊢ ( ( 𝑀 ∥ 𝑁 ∧ 𝑁 ∥ 𝑀 ) → 𝑁 ∥ 𝑀 ) |
| 3 |
|
breq1 |
⊢ ( 𝑁 = 0 → ( 𝑁 ∥ 𝑀 ↔ 0 ∥ 𝑀 ) ) |
| 4 |
|
0dvds |
⊢ ( 𝑀 ∈ ℤ → ( 0 ∥ 𝑀 ↔ 𝑀 = 0 ) ) |
| 5 |
4
|
adantr |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 0 ∥ 𝑀 ↔ 𝑀 = 0 ) ) |
| 6 |
|
zcn |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) |
| 7 |
6
|
abs00ad |
⊢ ( 𝑀 ∈ ℤ → ( ( abs ‘ 𝑀 ) = 0 ↔ 𝑀 = 0 ) ) |
| 8 |
7
|
bicomd |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 = 0 ↔ ( abs ‘ 𝑀 ) = 0 ) ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 = 0 ↔ ( abs ‘ 𝑀 ) = 0 ) ) |
| 10 |
5 9
|
bitrd |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 0 ∥ 𝑀 ↔ ( abs ‘ 𝑀 ) = 0 ) ) |
| 11 |
3 10
|
sylan9bb |
⊢ ( ( 𝑁 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑁 ∥ 𝑀 ↔ ( abs ‘ 𝑀 ) = 0 ) ) |
| 12 |
|
fveq2 |
⊢ ( 𝑁 = 0 → ( abs ‘ 𝑁 ) = ( abs ‘ 0 ) ) |
| 13 |
|
abs0 |
⊢ ( abs ‘ 0 ) = 0 |
| 14 |
12 13
|
eqtrdi |
⊢ ( 𝑁 = 0 → ( abs ‘ 𝑁 ) = 0 ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝑁 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( abs ‘ 𝑁 ) = 0 ) |
| 16 |
15
|
eqeq2d |
⊢ ( ( 𝑁 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ↔ ( abs ‘ 𝑀 ) = 0 ) ) |
| 17 |
11 16
|
bitr4d |
⊢ ( ( 𝑁 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑁 ∥ 𝑀 ↔ ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) ) |
| 18 |
2 17
|
imbitrid |
⊢ ( ( 𝑁 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( 𝑀 ∥ 𝑁 ∧ 𝑁 ∥ 𝑀 ) → ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) ) |
| 19 |
18
|
expd |
⊢ ( ( 𝑁 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑀 ∥ 𝑁 → ( 𝑁 ∥ 𝑀 → ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) ) ) |
| 20 |
|
simprl |
⊢ ( ( ¬ 𝑁 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → 𝑀 ∈ ℤ ) |
| 21 |
|
simpr |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℤ ) |
| 22 |
21
|
adantl |
⊢ ( ( ¬ 𝑁 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → 𝑁 ∈ ℤ ) |
| 23 |
|
neqne |
⊢ ( ¬ 𝑁 = 0 → 𝑁 ≠ 0 ) |
| 24 |
23
|
adantr |
⊢ ( ( ¬ 𝑁 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → 𝑁 ≠ 0 ) |
| 25 |
|
dvdsleabs2 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( 𝑀 ∥ 𝑁 → ( abs ‘ 𝑀 ) ≤ ( abs ‘ 𝑁 ) ) ) |
| 26 |
20 22 24 25
|
syl3anc |
⊢ ( ( ¬ 𝑁 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑀 ∥ 𝑁 → ( abs ‘ 𝑀 ) ≤ ( abs ‘ 𝑁 ) ) ) |
| 27 |
|
simpr |
⊢ ( ( 𝑁 ∥ 𝑀 ∧ 𝑀 ∥ 𝑁 ) → 𝑀 ∥ 𝑁 ) |
| 28 |
|
breq1 |
⊢ ( 𝑀 = 0 → ( 𝑀 ∥ 𝑁 ↔ 0 ∥ 𝑁 ) ) |
| 29 |
|
0dvds |
⊢ ( 𝑁 ∈ ℤ → ( 0 ∥ 𝑁 ↔ 𝑁 = 0 ) ) |
| 30 |
|
zcn |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) |
| 31 |
30
|
abs00ad |
⊢ ( 𝑁 ∈ ℤ → ( ( abs ‘ 𝑁 ) = 0 ↔ 𝑁 = 0 ) ) |
| 32 |
|
eqcom |
⊢ ( ( abs ‘ 𝑁 ) = 0 ↔ 0 = ( abs ‘ 𝑁 ) ) |
| 33 |
31 32
|
bitr3di |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 = 0 ↔ 0 = ( abs ‘ 𝑁 ) ) ) |
| 34 |
29 33
|
bitrd |
⊢ ( 𝑁 ∈ ℤ → ( 0 ∥ 𝑁 ↔ 0 = ( abs ‘ 𝑁 ) ) ) |
| 35 |
34
|
adantl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 0 ∥ 𝑁 ↔ 0 = ( abs ‘ 𝑁 ) ) ) |
| 36 |
28 35
|
sylan9bb |
⊢ ( ( 𝑀 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑀 ∥ 𝑁 ↔ 0 = ( abs ‘ 𝑁 ) ) ) |
| 37 |
|
fveq2 |
⊢ ( 𝑀 = 0 → ( abs ‘ 𝑀 ) = ( abs ‘ 0 ) ) |
| 38 |
37 13
|
eqtrdi |
⊢ ( 𝑀 = 0 → ( abs ‘ 𝑀 ) = 0 ) |
| 39 |
38
|
adantr |
⊢ ( ( 𝑀 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( abs ‘ 𝑀 ) = 0 ) |
| 40 |
39
|
eqeq1d |
⊢ ( ( 𝑀 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ↔ 0 = ( abs ‘ 𝑁 ) ) ) |
| 41 |
36 40
|
bitr4d |
⊢ ( ( 𝑀 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑀 ∥ 𝑁 ↔ ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) ) |
| 42 |
27 41
|
imbitrid |
⊢ ( ( 𝑀 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( 𝑁 ∥ 𝑀 ∧ 𝑀 ∥ 𝑁 ) → ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) ) |
| 43 |
42
|
a1dd |
⊢ ( ( 𝑀 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( 𝑁 ∥ 𝑀 ∧ 𝑀 ∥ 𝑁 ) → ( ( abs ‘ 𝑀 ) ≤ ( abs ‘ 𝑁 ) → ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) ) ) |
| 44 |
43
|
expcomd |
⊢ ( ( 𝑀 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑀 ∥ 𝑁 → ( 𝑁 ∥ 𝑀 → ( ( abs ‘ 𝑀 ) ≤ ( abs ‘ 𝑁 ) → ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) ) ) ) |
| 45 |
21
|
adantl |
⊢ ( ( ¬ 𝑀 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → 𝑁 ∈ ℤ ) |
| 46 |
|
simprl |
⊢ ( ( ¬ 𝑀 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → 𝑀 ∈ ℤ ) |
| 47 |
|
neqne |
⊢ ( ¬ 𝑀 = 0 → 𝑀 ≠ 0 ) |
| 48 |
47
|
adantr |
⊢ ( ( ¬ 𝑀 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → 𝑀 ≠ 0 ) |
| 49 |
|
dvdsleabs2 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) → ( 𝑁 ∥ 𝑀 → ( abs ‘ 𝑁 ) ≤ ( abs ‘ 𝑀 ) ) ) |
| 50 |
45 46 48 49
|
syl3anc |
⊢ ( ( ¬ 𝑀 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑁 ∥ 𝑀 → ( abs ‘ 𝑁 ) ≤ ( abs ‘ 𝑀 ) ) ) |
| 51 |
|
eqcom |
⊢ ( ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ↔ ( abs ‘ 𝑁 ) = ( abs ‘ 𝑀 ) ) |
| 52 |
30
|
abscld |
⊢ ( 𝑁 ∈ ℤ → ( abs ‘ 𝑁 ) ∈ ℝ ) |
| 53 |
6
|
abscld |
⊢ ( 𝑀 ∈ ℤ → ( abs ‘ 𝑀 ) ∈ ℝ ) |
| 54 |
|
letri3 |
⊢ ( ( ( abs ‘ 𝑁 ) ∈ ℝ ∧ ( abs ‘ 𝑀 ) ∈ ℝ ) → ( ( abs ‘ 𝑁 ) = ( abs ‘ 𝑀 ) ↔ ( ( abs ‘ 𝑁 ) ≤ ( abs ‘ 𝑀 ) ∧ ( abs ‘ 𝑀 ) ≤ ( abs ‘ 𝑁 ) ) ) ) |
| 55 |
52 53 54
|
syl2anr |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ 𝑁 ) = ( abs ‘ 𝑀 ) ↔ ( ( abs ‘ 𝑁 ) ≤ ( abs ‘ 𝑀 ) ∧ ( abs ‘ 𝑀 ) ≤ ( abs ‘ 𝑁 ) ) ) ) |
| 56 |
51 55
|
bitrid |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ↔ ( ( abs ‘ 𝑁 ) ≤ ( abs ‘ 𝑀 ) ∧ ( abs ‘ 𝑀 ) ≤ ( abs ‘ 𝑁 ) ) ) ) |
| 57 |
56
|
biimprd |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( abs ‘ 𝑁 ) ≤ ( abs ‘ 𝑀 ) ∧ ( abs ‘ 𝑀 ) ≤ ( abs ‘ 𝑁 ) ) → ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) ) |
| 58 |
57
|
expd |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ 𝑁 ) ≤ ( abs ‘ 𝑀 ) → ( ( abs ‘ 𝑀 ) ≤ ( abs ‘ 𝑁 ) → ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) ) ) |
| 59 |
58
|
adantl |
⊢ ( ( ¬ 𝑀 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( abs ‘ 𝑁 ) ≤ ( abs ‘ 𝑀 ) → ( ( abs ‘ 𝑀 ) ≤ ( abs ‘ 𝑁 ) → ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) ) ) |
| 60 |
50 59
|
syld |
⊢ ( ( ¬ 𝑀 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑁 ∥ 𝑀 → ( ( abs ‘ 𝑀 ) ≤ ( abs ‘ 𝑁 ) → ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) ) ) |
| 61 |
60
|
a1d |
⊢ ( ( ¬ 𝑀 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑀 ∥ 𝑁 → ( 𝑁 ∥ 𝑀 → ( ( abs ‘ 𝑀 ) ≤ ( abs ‘ 𝑁 ) → ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) ) ) ) |
| 62 |
44 61
|
pm2.61ian |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 → ( 𝑁 ∥ 𝑀 → ( ( abs ‘ 𝑀 ) ≤ ( abs ‘ 𝑁 ) → ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) ) ) ) |
| 63 |
62
|
com34 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 → ( ( abs ‘ 𝑀 ) ≤ ( abs ‘ 𝑁 ) → ( 𝑁 ∥ 𝑀 → ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) ) ) ) |
| 64 |
63
|
adantl |
⊢ ( ( ¬ 𝑁 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑀 ∥ 𝑁 → ( ( abs ‘ 𝑀 ) ≤ ( abs ‘ 𝑁 ) → ( 𝑁 ∥ 𝑀 → ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) ) ) ) |
| 65 |
26 64
|
mpdd |
⊢ ( ( ¬ 𝑁 = 0 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑀 ∥ 𝑁 → ( 𝑁 ∥ 𝑀 → ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) ) ) |
| 66 |
19 65
|
pm2.61ian |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 → ( 𝑁 ∥ 𝑀 → ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) ) ) |
| 67 |
1 66
|
mpcom |
⊢ ( 𝑀 ∥ 𝑁 → ( 𝑁 ∥ 𝑀 → ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) ) |
| 68 |
67
|
imp |
⊢ ( ( 𝑀 ∥ 𝑁 ∧ 𝑁 ∥ 𝑀 ) → ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) |