Step |
Hyp |
Ref |
Expression |
1 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) ∧ 𝐴 ∥ 𝐵 ) → 𝐴 ∈ ℤ ) |
2 |
|
simpl3l |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) ∧ 𝐴 ∥ 𝐵 ) → 𝐶 ∈ ℤ ) |
3 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) ∧ 𝐴 ∥ 𝐵 ) → 𝐵 ∈ ℤ ) |
4 |
|
simpl3r |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) ∧ 𝐴 ∥ 𝐵 ) → 𝐴 ∥ 𝐶 ) |
5 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) ∧ 𝐴 ∥ 𝐵 ) → 𝐴 ∥ 𝐵 ) |
6 |
1 2 3 4 5
|
dvds2addd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) ∧ 𝐴 ∥ 𝐵 ) → 𝐴 ∥ ( 𝐶 + 𝐵 ) ) |
7 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) ∧ 𝐴 ∥ ( 𝐶 + 𝐵 ) ) → 𝐴 ∈ ℤ ) |
8 |
|
simp3l |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) → 𝐶 ∈ ℤ ) |
9 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) → 𝐵 ∈ ℤ ) |
10 |
|
zaddcl |
⊢ ( ( 𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐶 + 𝐵 ) ∈ ℤ ) |
11 |
8 9 10
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) → ( 𝐶 + 𝐵 ) ∈ ℤ ) |
12 |
11
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) ∧ 𝐴 ∥ ( 𝐶 + 𝐵 ) ) → ( 𝐶 + 𝐵 ) ∈ ℤ ) |
13 |
8
|
znegcld |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) → - 𝐶 ∈ ℤ ) |
14 |
13
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) ∧ 𝐴 ∥ ( 𝐶 + 𝐵 ) ) → - 𝐶 ∈ ℤ ) |
15 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) ∧ 𝐴 ∥ ( 𝐶 + 𝐵 ) ) → 𝐴 ∥ ( 𝐶 + 𝐵 ) ) |
16 |
|
simpl3r |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) ∧ 𝐴 ∥ ( 𝐶 + 𝐵 ) ) → 𝐴 ∥ 𝐶 ) |
17 |
|
simpl3l |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) ∧ 𝐴 ∥ ( 𝐶 + 𝐵 ) ) → 𝐶 ∈ ℤ ) |
18 |
|
dvdsnegb |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴 ∥ 𝐶 ↔ 𝐴 ∥ - 𝐶 ) ) |
19 |
7 17 18
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) ∧ 𝐴 ∥ ( 𝐶 + 𝐵 ) ) → ( 𝐴 ∥ 𝐶 ↔ 𝐴 ∥ - 𝐶 ) ) |
20 |
16 19
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) ∧ 𝐴 ∥ ( 𝐶 + 𝐵 ) ) → 𝐴 ∥ - 𝐶 ) |
21 |
7 12 14 15 20
|
dvds2addd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) ∧ 𝐴 ∥ ( 𝐶 + 𝐵 ) ) → 𝐴 ∥ ( ( 𝐶 + 𝐵 ) + - 𝐶 ) ) |
22 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) ∧ 𝐴 ∥ ( 𝐶 + 𝐵 ) ) → 𝐵 ∈ ℤ ) |
23 |
10
|
ancoms |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐶 + 𝐵 ) ∈ ℤ ) |
24 |
23
|
zcnd |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐶 + 𝐵 ) ∈ ℂ ) |
25 |
|
zcn |
⊢ ( 𝐶 ∈ ℤ → 𝐶 ∈ ℂ ) |
26 |
25
|
adantl |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → 𝐶 ∈ ℂ ) |
27 |
24 26
|
negsubd |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐶 + 𝐵 ) + - 𝐶 ) = ( ( 𝐶 + 𝐵 ) − 𝐶 ) ) |
28 |
|
zcn |
⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℂ ) |
29 |
28
|
adantr |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → 𝐵 ∈ ℂ ) |
30 |
26 29
|
pncan2d |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐶 + 𝐵 ) − 𝐶 ) = 𝐵 ) |
31 |
27 30
|
eqtrd |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐶 + 𝐵 ) + - 𝐶 ) = 𝐵 ) |
32 |
22 17 31
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) ∧ 𝐴 ∥ ( 𝐶 + 𝐵 ) ) → ( ( 𝐶 + 𝐵 ) + - 𝐶 ) = 𝐵 ) |
33 |
21 32
|
breqtrd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) ∧ 𝐴 ∥ ( 𝐶 + 𝐵 ) ) → 𝐴 ∥ 𝐵 ) |
34 |
6 33
|
impbida |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) → ( 𝐴 ∥ 𝐵 ↔ 𝐴 ∥ ( 𝐶 + 𝐵 ) ) ) |