| Step | Hyp | Ref | Expression | 
						
							| 1 |  | breq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  ∥  𝑁  ↔  𝐴  ∥  𝑁 ) ) | 
						
							| 2 | 1 | elrab | ⊢ ( 𝐴  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 }  ↔  ( 𝐴  ∈  ℕ  ∧  𝐴  ∥  𝑁 ) ) | 
						
							| 3 |  | nndivdvds | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ℕ )  →  ( 𝐴  ∥  𝑁  ↔  ( 𝑁  /  𝐴 )  ∈  ℕ ) ) | 
						
							| 4 | 3 | biimpd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ℕ )  →  ( 𝐴  ∥  𝑁  →  ( 𝑁  /  𝐴 )  ∈  ℕ ) ) | 
						
							| 5 | 4 | expcom | ⊢ ( 𝐴  ∈  ℕ  →  ( 𝑁  ∈  ℕ  →  ( 𝐴  ∥  𝑁  →  ( 𝑁  /  𝐴 )  ∈  ℕ ) ) ) | 
						
							| 6 | 5 | com23 | ⊢ ( 𝐴  ∈  ℕ  →  ( 𝐴  ∥  𝑁  →  ( 𝑁  ∈  ℕ  →  ( 𝑁  /  𝐴 )  ∈  ℕ ) ) ) | 
						
							| 7 | 6 | imp | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐴  ∥  𝑁 )  →  ( 𝑁  ∈  ℕ  →  ( 𝑁  /  𝐴 )  ∈  ℕ ) ) | 
						
							| 8 |  | nnne0 | ⊢ ( 𝐴  ∈  ℕ  →  𝐴  ≠  0 ) | 
						
							| 9 | 8 | anim1ci | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐴  ∥  𝑁 )  →  ( 𝐴  ∥  𝑁  ∧  𝐴  ≠  0 ) ) | 
						
							| 10 |  | divconjdvds | ⊢ ( ( 𝐴  ∥  𝑁  ∧  𝐴  ≠  0 )  →  ( 𝑁  /  𝐴 )  ∥  𝑁 ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐴  ∥  𝑁 )  →  ( 𝑁  /  𝐴 )  ∥  𝑁 ) | 
						
							| 12 | 7 11 | jctird | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐴  ∥  𝑁 )  →  ( 𝑁  ∈  ℕ  →  ( ( 𝑁  /  𝐴 )  ∈  ℕ  ∧  ( 𝑁  /  𝐴 )  ∥  𝑁 ) ) ) | 
						
							| 13 | 2 12 | sylbi | ⊢ ( 𝐴  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 }  →  ( 𝑁  ∈  ℕ  →  ( ( 𝑁  /  𝐴 )  ∈  ℕ  ∧  ( 𝑁  /  𝐴 )  ∥  𝑁 ) ) ) | 
						
							| 14 | 13 | impcom | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  →  ( ( 𝑁  /  𝐴 )  ∈  ℕ  ∧  ( 𝑁  /  𝐴 )  ∥  𝑁 ) ) | 
						
							| 15 |  | breq1 | ⊢ ( 𝑥  =  ( 𝑁  /  𝐴 )  →  ( 𝑥  ∥  𝑁  ↔  ( 𝑁  /  𝐴 )  ∥  𝑁 ) ) | 
						
							| 16 | 15 | elrab | ⊢ ( ( 𝑁  /  𝐴 )  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 }  ↔  ( ( 𝑁  /  𝐴 )  ∈  ℕ  ∧  ( 𝑁  /  𝐴 )  ∥  𝑁 ) ) | 
						
							| 17 | 14 16 | sylibr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  →  ( 𝑁  /  𝐴 )  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } ) |