| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 | ⊢ ( 𝑥  =  𝐾  →  ( ! ‘ 𝑥 )  =  ( ! ‘ 𝐾 ) ) | 
						
							| 2 | 1 | breq2d | ⊢ ( 𝑥  =  𝐾  →  ( 𝐾  ∥  ( ! ‘ 𝑥 )  ↔  𝐾  ∥  ( ! ‘ 𝐾 ) ) ) | 
						
							| 3 | 2 | imbi2d | ⊢ ( 𝑥  =  𝐾  →  ( ( 𝐾  ∈  ℕ  →  𝐾  ∥  ( ! ‘ 𝑥 ) )  ↔  ( 𝐾  ∈  ℕ  →  𝐾  ∥  ( ! ‘ 𝐾 ) ) ) ) | 
						
							| 4 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( ! ‘ 𝑥 )  =  ( ! ‘ 𝑦 ) ) | 
						
							| 5 | 4 | breq2d | ⊢ ( 𝑥  =  𝑦  →  ( 𝐾  ∥  ( ! ‘ 𝑥 )  ↔  𝐾  ∥  ( ! ‘ 𝑦 ) ) ) | 
						
							| 6 | 5 | imbi2d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝐾  ∈  ℕ  →  𝐾  ∥  ( ! ‘ 𝑥 ) )  ↔  ( 𝐾  ∈  ℕ  →  𝐾  ∥  ( ! ‘ 𝑦 ) ) ) ) | 
						
							| 7 |  | fveq2 | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( ! ‘ 𝑥 )  =  ( ! ‘ ( 𝑦  +  1 ) ) ) | 
						
							| 8 | 7 | breq2d | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( 𝐾  ∥  ( ! ‘ 𝑥 )  ↔  𝐾  ∥  ( ! ‘ ( 𝑦  +  1 ) ) ) ) | 
						
							| 9 | 8 | imbi2d | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( ( 𝐾  ∈  ℕ  →  𝐾  ∥  ( ! ‘ 𝑥 ) )  ↔  ( 𝐾  ∈  ℕ  →  𝐾  ∥  ( ! ‘ ( 𝑦  +  1 ) ) ) ) ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑥  =  𝑁  →  ( ! ‘ 𝑥 )  =  ( ! ‘ 𝑁 ) ) | 
						
							| 11 | 10 | breq2d | ⊢ ( 𝑥  =  𝑁  →  ( 𝐾  ∥  ( ! ‘ 𝑥 )  ↔  𝐾  ∥  ( ! ‘ 𝑁 ) ) ) | 
						
							| 12 | 11 | imbi2d | ⊢ ( 𝑥  =  𝑁  →  ( ( 𝐾  ∈  ℕ  →  𝐾  ∥  ( ! ‘ 𝑥 ) )  ↔  ( 𝐾  ∈  ℕ  →  𝐾  ∥  ( ! ‘ 𝑁 ) ) ) ) | 
						
							| 13 |  | nnm1nn0 | ⊢ ( 𝐾  ∈  ℕ  →  ( 𝐾  −  1 )  ∈  ℕ0 ) | 
						
							| 14 | 13 | faccld | ⊢ ( 𝐾  ∈  ℕ  →  ( ! ‘ ( 𝐾  −  1 ) )  ∈  ℕ ) | 
						
							| 15 | 14 | nnzd | ⊢ ( 𝐾  ∈  ℕ  →  ( ! ‘ ( 𝐾  −  1 ) )  ∈  ℤ ) | 
						
							| 16 |  | nnz | ⊢ ( 𝐾  ∈  ℕ  →  𝐾  ∈  ℤ ) | 
						
							| 17 |  | dvdsmul2 | ⊢ ( ( ( ! ‘ ( 𝐾  −  1 ) )  ∈  ℤ  ∧  𝐾  ∈  ℤ )  →  𝐾  ∥  ( ( ! ‘ ( 𝐾  −  1 ) )  ·  𝐾 ) ) | 
						
							| 18 | 15 16 17 | syl2anc | ⊢ ( 𝐾  ∈  ℕ  →  𝐾  ∥  ( ( ! ‘ ( 𝐾  −  1 ) )  ·  𝐾 ) ) | 
						
							| 19 |  | facnn2 | ⊢ ( 𝐾  ∈  ℕ  →  ( ! ‘ 𝐾 )  =  ( ( ! ‘ ( 𝐾  −  1 ) )  ·  𝐾 ) ) | 
						
							| 20 | 18 19 | breqtrrd | ⊢ ( 𝐾  ∈  ℕ  →  𝐾  ∥  ( ! ‘ 𝐾 ) ) | 
						
							| 21 | 16 | adantl | ⊢ ( ( 𝑦  ∈  ( ℤ≥ ‘ 𝐾 )  ∧  𝐾  ∈  ℕ )  →  𝐾  ∈  ℤ ) | 
						
							| 22 |  | elnnuz | ⊢ ( 𝐾  ∈  ℕ  ↔  𝐾  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 23 |  | uztrn | ⊢ ( ( 𝑦  ∈  ( ℤ≥ ‘ 𝐾 )  ∧  𝐾  ∈  ( ℤ≥ ‘ 1 ) )  →  𝑦  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 24 | 22 23 | sylan2b | ⊢ ( ( 𝑦  ∈  ( ℤ≥ ‘ 𝐾 )  ∧  𝐾  ∈  ℕ )  →  𝑦  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 25 |  | elnnuz | ⊢ ( 𝑦  ∈  ℕ  ↔  𝑦  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 26 | 24 25 | sylibr | ⊢ ( ( 𝑦  ∈  ( ℤ≥ ‘ 𝐾 )  ∧  𝐾  ∈  ℕ )  →  𝑦  ∈  ℕ ) | 
						
							| 27 | 26 | nnnn0d | ⊢ ( ( 𝑦  ∈  ( ℤ≥ ‘ 𝐾 )  ∧  𝐾  ∈  ℕ )  →  𝑦  ∈  ℕ0 ) | 
						
							| 28 | 27 | faccld | ⊢ ( ( 𝑦  ∈  ( ℤ≥ ‘ 𝐾 )  ∧  𝐾  ∈  ℕ )  →  ( ! ‘ 𝑦 )  ∈  ℕ ) | 
						
							| 29 | 28 | nnzd | ⊢ ( ( 𝑦  ∈  ( ℤ≥ ‘ 𝐾 )  ∧  𝐾  ∈  ℕ )  →  ( ! ‘ 𝑦 )  ∈  ℤ ) | 
						
							| 30 | 26 | nnzd | ⊢ ( ( 𝑦  ∈  ( ℤ≥ ‘ 𝐾 )  ∧  𝐾  ∈  ℕ )  →  𝑦  ∈  ℤ ) | 
						
							| 31 | 30 | peano2zd | ⊢ ( ( 𝑦  ∈  ( ℤ≥ ‘ 𝐾 )  ∧  𝐾  ∈  ℕ )  →  ( 𝑦  +  1 )  ∈  ℤ ) | 
						
							| 32 |  | dvdsmultr1 | ⊢ ( ( 𝐾  ∈  ℤ  ∧  ( ! ‘ 𝑦 )  ∈  ℤ  ∧  ( 𝑦  +  1 )  ∈  ℤ )  →  ( 𝐾  ∥  ( ! ‘ 𝑦 )  →  𝐾  ∥  ( ( ! ‘ 𝑦 )  ·  ( 𝑦  +  1 ) ) ) ) | 
						
							| 33 | 21 29 31 32 | syl3anc | ⊢ ( ( 𝑦  ∈  ( ℤ≥ ‘ 𝐾 )  ∧  𝐾  ∈  ℕ )  →  ( 𝐾  ∥  ( ! ‘ 𝑦 )  →  𝐾  ∥  ( ( ! ‘ 𝑦 )  ·  ( 𝑦  +  1 ) ) ) ) | 
						
							| 34 |  | facp1 | ⊢ ( 𝑦  ∈  ℕ0  →  ( ! ‘ ( 𝑦  +  1 ) )  =  ( ( ! ‘ 𝑦 )  ·  ( 𝑦  +  1 ) ) ) | 
						
							| 35 | 27 34 | syl | ⊢ ( ( 𝑦  ∈  ( ℤ≥ ‘ 𝐾 )  ∧  𝐾  ∈  ℕ )  →  ( ! ‘ ( 𝑦  +  1 ) )  =  ( ( ! ‘ 𝑦 )  ·  ( 𝑦  +  1 ) ) ) | 
						
							| 36 | 35 | breq2d | ⊢ ( ( 𝑦  ∈  ( ℤ≥ ‘ 𝐾 )  ∧  𝐾  ∈  ℕ )  →  ( 𝐾  ∥  ( ! ‘ ( 𝑦  +  1 ) )  ↔  𝐾  ∥  ( ( ! ‘ 𝑦 )  ·  ( 𝑦  +  1 ) ) ) ) | 
						
							| 37 | 33 36 | sylibrd | ⊢ ( ( 𝑦  ∈  ( ℤ≥ ‘ 𝐾 )  ∧  𝐾  ∈  ℕ )  →  ( 𝐾  ∥  ( ! ‘ 𝑦 )  →  𝐾  ∥  ( ! ‘ ( 𝑦  +  1 ) ) ) ) | 
						
							| 38 | 37 | ex | ⊢ ( 𝑦  ∈  ( ℤ≥ ‘ 𝐾 )  →  ( 𝐾  ∈  ℕ  →  ( 𝐾  ∥  ( ! ‘ 𝑦 )  →  𝐾  ∥  ( ! ‘ ( 𝑦  +  1 ) ) ) ) ) | 
						
							| 39 | 38 | a2d | ⊢ ( 𝑦  ∈  ( ℤ≥ ‘ 𝐾 )  →  ( ( 𝐾  ∈  ℕ  →  𝐾  ∥  ( ! ‘ 𝑦 ) )  →  ( 𝐾  ∈  ℕ  →  𝐾  ∥  ( ! ‘ ( 𝑦  +  1 ) ) ) ) ) | 
						
							| 40 | 3 6 9 12 20 39 | uzind4i | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝐾 )  →  ( 𝐾  ∈  ℕ  →  𝐾  ∥  ( ! ‘ 𝑁 ) ) ) | 
						
							| 41 | 40 | impcom | ⊢ ( ( 𝐾  ∈  ℕ  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  𝐾  ∥  ( ! ‘ 𝑁 ) ) |