Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
⊢ ( 𝑥 = 𝐾 → ( ! ‘ 𝑥 ) = ( ! ‘ 𝐾 ) ) |
2 |
1
|
breq2d |
⊢ ( 𝑥 = 𝐾 → ( 𝐾 ∥ ( ! ‘ 𝑥 ) ↔ 𝐾 ∥ ( ! ‘ 𝐾 ) ) ) |
3 |
2
|
imbi2d |
⊢ ( 𝑥 = 𝐾 → ( ( 𝐾 ∈ ℕ → 𝐾 ∥ ( ! ‘ 𝑥 ) ) ↔ ( 𝐾 ∈ ℕ → 𝐾 ∥ ( ! ‘ 𝐾 ) ) ) ) |
4 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ! ‘ 𝑥 ) = ( ! ‘ 𝑦 ) ) |
5 |
4
|
breq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐾 ∥ ( ! ‘ 𝑥 ) ↔ 𝐾 ∥ ( ! ‘ 𝑦 ) ) ) |
6 |
5
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐾 ∈ ℕ → 𝐾 ∥ ( ! ‘ 𝑥 ) ) ↔ ( 𝐾 ∈ ℕ → 𝐾 ∥ ( ! ‘ 𝑦 ) ) ) ) |
7 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ! ‘ 𝑥 ) = ( ! ‘ ( 𝑦 + 1 ) ) ) |
8 |
7
|
breq2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝐾 ∥ ( ! ‘ 𝑥 ) ↔ 𝐾 ∥ ( ! ‘ ( 𝑦 + 1 ) ) ) ) |
9 |
8
|
imbi2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝐾 ∈ ℕ → 𝐾 ∥ ( ! ‘ 𝑥 ) ) ↔ ( 𝐾 ∈ ℕ → 𝐾 ∥ ( ! ‘ ( 𝑦 + 1 ) ) ) ) ) |
10 |
|
fveq2 |
⊢ ( 𝑥 = 𝑁 → ( ! ‘ 𝑥 ) = ( ! ‘ 𝑁 ) ) |
11 |
10
|
breq2d |
⊢ ( 𝑥 = 𝑁 → ( 𝐾 ∥ ( ! ‘ 𝑥 ) ↔ 𝐾 ∥ ( ! ‘ 𝑁 ) ) ) |
12 |
11
|
imbi2d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝐾 ∈ ℕ → 𝐾 ∥ ( ! ‘ 𝑥 ) ) ↔ ( 𝐾 ∈ ℕ → 𝐾 ∥ ( ! ‘ 𝑁 ) ) ) ) |
13 |
|
nnm1nn0 |
⊢ ( 𝐾 ∈ ℕ → ( 𝐾 − 1 ) ∈ ℕ0 ) |
14 |
13
|
faccld |
⊢ ( 𝐾 ∈ ℕ → ( ! ‘ ( 𝐾 − 1 ) ) ∈ ℕ ) |
15 |
14
|
nnzd |
⊢ ( 𝐾 ∈ ℕ → ( ! ‘ ( 𝐾 − 1 ) ) ∈ ℤ ) |
16 |
|
nnz |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℤ ) |
17 |
|
dvdsmul2 |
⊢ ( ( ( ! ‘ ( 𝐾 − 1 ) ) ∈ ℤ ∧ 𝐾 ∈ ℤ ) → 𝐾 ∥ ( ( ! ‘ ( 𝐾 − 1 ) ) · 𝐾 ) ) |
18 |
15 16 17
|
syl2anc |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ∥ ( ( ! ‘ ( 𝐾 − 1 ) ) · 𝐾 ) ) |
19 |
|
facnn2 |
⊢ ( 𝐾 ∈ ℕ → ( ! ‘ 𝐾 ) = ( ( ! ‘ ( 𝐾 − 1 ) ) · 𝐾 ) ) |
20 |
18 19
|
breqtrrd |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ∥ ( ! ‘ 𝐾 ) ) |
21 |
16
|
adantl |
⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ 𝐾 ∈ ℕ ) → 𝐾 ∈ ℤ ) |
22 |
|
elnnuz |
⊢ ( 𝐾 ∈ ℕ ↔ 𝐾 ∈ ( ℤ≥ ‘ 1 ) ) |
23 |
|
uztrn |
⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ 𝐾 ∈ ( ℤ≥ ‘ 1 ) ) → 𝑦 ∈ ( ℤ≥ ‘ 1 ) ) |
24 |
22 23
|
sylan2b |
⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ 𝐾 ∈ ℕ ) → 𝑦 ∈ ( ℤ≥ ‘ 1 ) ) |
25 |
|
elnnuz |
⊢ ( 𝑦 ∈ ℕ ↔ 𝑦 ∈ ( ℤ≥ ‘ 1 ) ) |
26 |
24 25
|
sylibr |
⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ 𝐾 ∈ ℕ ) → 𝑦 ∈ ℕ ) |
27 |
26
|
nnnn0d |
⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ 𝐾 ∈ ℕ ) → 𝑦 ∈ ℕ0 ) |
28 |
27
|
faccld |
⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ 𝐾 ∈ ℕ ) → ( ! ‘ 𝑦 ) ∈ ℕ ) |
29 |
28
|
nnzd |
⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ 𝐾 ∈ ℕ ) → ( ! ‘ 𝑦 ) ∈ ℤ ) |
30 |
26
|
nnzd |
⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ 𝐾 ∈ ℕ ) → 𝑦 ∈ ℤ ) |
31 |
30
|
peano2zd |
⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ 𝐾 ∈ ℕ ) → ( 𝑦 + 1 ) ∈ ℤ ) |
32 |
|
dvdsmultr1 |
⊢ ( ( 𝐾 ∈ ℤ ∧ ( ! ‘ 𝑦 ) ∈ ℤ ∧ ( 𝑦 + 1 ) ∈ ℤ ) → ( 𝐾 ∥ ( ! ‘ 𝑦 ) → 𝐾 ∥ ( ( ! ‘ 𝑦 ) · ( 𝑦 + 1 ) ) ) ) |
33 |
21 29 31 32
|
syl3anc |
⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ 𝐾 ∈ ℕ ) → ( 𝐾 ∥ ( ! ‘ 𝑦 ) → 𝐾 ∥ ( ( ! ‘ 𝑦 ) · ( 𝑦 + 1 ) ) ) ) |
34 |
|
facp1 |
⊢ ( 𝑦 ∈ ℕ0 → ( ! ‘ ( 𝑦 + 1 ) ) = ( ( ! ‘ 𝑦 ) · ( 𝑦 + 1 ) ) ) |
35 |
27 34
|
syl |
⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ 𝐾 ∈ ℕ ) → ( ! ‘ ( 𝑦 + 1 ) ) = ( ( ! ‘ 𝑦 ) · ( 𝑦 + 1 ) ) ) |
36 |
35
|
breq2d |
⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ 𝐾 ∈ ℕ ) → ( 𝐾 ∥ ( ! ‘ ( 𝑦 + 1 ) ) ↔ 𝐾 ∥ ( ( ! ‘ 𝑦 ) · ( 𝑦 + 1 ) ) ) ) |
37 |
33 36
|
sylibrd |
⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ 𝐾 ∈ ℕ ) → ( 𝐾 ∥ ( ! ‘ 𝑦 ) → 𝐾 ∥ ( ! ‘ ( 𝑦 + 1 ) ) ) ) |
38 |
37
|
ex |
⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝐾 ) → ( 𝐾 ∈ ℕ → ( 𝐾 ∥ ( ! ‘ 𝑦 ) → 𝐾 ∥ ( ! ‘ ( 𝑦 + 1 ) ) ) ) ) |
39 |
38
|
a2d |
⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝐾 ) → ( ( 𝐾 ∈ ℕ → 𝐾 ∥ ( ! ‘ 𝑦 ) ) → ( 𝐾 ∈ ℕ → 𝐾 ∥ ( ! ‘ ( 𝑦 + 1 ) ) ) ) ) |
40 |
3 6 9 12 20 39
|
uzind4i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) → ( 𝐾 ∈ ℕ → 𝐾 ∥ ( ! ‘ 𝑁 ) ) ) |
41 |
40
|
impcom |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝐾 ∥ ( ! ‘ 𝑁 ) ) |