Metamath Proof Explorer


Theorem dvdsfi

Description: A natural number has finitely many divisors. (Contributed by Jim Kingdon, 9-Oct-2025)

Ref Expression
Assertion dvdsfi ( 𝑁 ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ∈ Fin )

Proof

Step Hyp Ref Expression
1 fzfid ( 𝑁 ∈ ℕ → ( 1 ... 𝑁 ) ∈ Fin )
2 dvdsssfz1 ( 𝑁 ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ⊆ ( 1 ... 𝑁 ) )
3 1 2 ssfid ( 𝑁 ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ∈ Fin )