Step |
Hyp |
Ref |
Expression |
1 |
|
dvdsflip.a |
⊢ 𝐴 = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } |
2 |
|
dvdsflip.f |
⊢ 𝐹 = ( 𝑦 ∈ 𝐴 ↦ ( 𝑁 / 𝑦 ) ) |
3 |
1
|
eleq2i |
⊢ ( 𝑦 ∈ 𝐴 ↔ 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |
4 |
|
dvdsdivcl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( 𝑁 / 𝑦 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |
5 |
3 4
|
sylan2b |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) → ( 𝑁 / 𝑦 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |
6 |
5 1
|
eleqtrrdi |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) → ( 𝑁 / 𝑦 ) ∈ 𝐴 ) |
7 |
1
|
eleq2i |
⊢ ( 𝑧 ∈ 𝐴 ↔ 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |
8 |
|
dvdsdivcl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( 𝑁 / 𝑧 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |
9 |
7 8
|
sylan2b |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝐴 ) → ( 𝑁 / 𝑧 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |
10 |
9 1
|
eleqtrrdi |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝐴 ) → ( 𝑁 / 𝑧 ) ∈ 𝐴 ) |
11 |
1
|
ssrab3 |
⊢ 𝐴 ⊆ ℕ |
12 |
11
|
sseli |
⊢ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ℕ ) |
13 |
11
|
sseli |
⊢ ( 𝑧 ∈ 𝐴 → 𝑧 ∈ ℕ ) |
14 |
12 13
|
anim12i |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ) |
15 |
|
nncn |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) |
16 |
15
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ) → 𝑁 ∈ ℂ ) |
17 |
|
nncn |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℂ ) |
18 |
17
|
ad2antrl |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ) → 𝑦 ∈ ℂ ) |
19 |
|
nncn |
⊢ ( 𝑧 ∈ ℕ → 𝑧 ∈ ℂ ) |
20 |
19
|
ad2antll |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ) → 𝑧 ∈ ℂ ) |
21 |
|
nnne0 |
⊢ ( 𝑧 ∈ ℕ → 𝑧 ≠ 0 ) |
22 |
21
|
ad2antll |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ) → 𝑧 ≠ 0 ) |
23 |
16 18 20 22
|
divmul3d |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ) → ( ( 𝑁 / 𝑧 ) = 𝑦 ↔ 𝑁 = ( 𝑦 · 𝑧 ) ) ) |
24 |
|
nnne0 |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ≠ 0 ) |
25 |
24
|
ad2antrl |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ) → 𝑦 ≠ 0 ) |
26 |
16 20 18 25
|
divmul2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ) → ( ( 𝑁 / 𝑦 ) = 𝑧 ↔ 𝑁 = ( 𝑦 · 𝑧 ) ) ) |
27 |
23 26
|
bitr4d |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ) → ( ( 𝑁 / 𝑧 ) = 𝑦 ↔ ( 𝑁 / 𝑦 ) = 𝑧 ) ) |
28 |
14 27
|
sylan2 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑁 / 𝑧 ) = 𝑦 ↔ ( 𝑁 / 𝑦 ) = 𝑧 ) ) |
29 |
|
eqcom |
⊢ ( 𝑦 = ( 𝑁 / 𝑧 ) ↔ ( 𝑁 / 𝑧 ) = 𝑦 ) |
30 |
|
eqcom |
⊢ ( 𝑧 = ( 𝑁 / 𝑦 ) ↔ ( 𝑁 / 𝑦 ) = 𝑧 ) |
31 |
28 29 30
|
3bitr4g |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 = ( 𝑁 / 𝑧 ) ↔ 𝑧 = ( 𝑁 / 𝑦 ) ) ) |
32 |
2 6 10 31
|
f1o2d |
⊢ ( 𝑁 ∈ ℕ → 𝐹 : 𝐴 –1-1-onto→ 𝐴 ) |