Step |
Hyp |
Ref |
Expression |
1 |
|
dvdsflsumcom.1 |
⊢ ( 𝑛 = ( 𝑑 · 𝑚 ) → 𝐵 = 𝐶 ) |
2 |
|
dvdsflsumcom.2 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
3 |
|
dvdsflsumcom.3 |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ) ) → 𝐵 ∈ ℂ ) |
4 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∈ Fin ) |
5 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 1 ... 𝑛 ) ∈ Fin ) |
6 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) → 𝑛 ∈ ℕ ) |
7 |
6
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ∈ ℕ ) |
8 |
|
dvdsssfz1 |
⊢ ( 𝑛 ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ⊆ ( 1 ... 𝑛 ) ) |
9 |
7 8
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ⊆ ( 1 ... 𝑛 ) ) |
10 |
5 9
|
ssfid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ∈ Fin ) |
11 |
|
nnre |
⊢ ( 𝑑 ∈ ℕ → 𝑑 ∈ ℝ ) |
12 |
11
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛 ) ) → 𝑑 ∈ ℝ ) |
13 |
7
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛 ) ) → 𝑛 ∈ ℕ ) |
14 |
13
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛 ) ) → 𝑛 ∈ ℝ ) |
15 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛 ) ) → 𝐴 ∈ ℝ ) |
16 |
|
nnz |
⊢ ( 𝑑 ∈ ℕ → 𝑑 ∈ ℤ ) |
17 |
|
dvdsle |
⊢ ( ( 𝑑 ∈ ℤ ∧ 𝑛 ∈ ℕ ) → ( 𝑑 ∥ 𝑛 → 𝑑 ≤ 𝑛 ) ) |
18 |
16 7 17
|
syl2anr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑑 ∈ ℕ ) → ( 𝑑 ∥ 𝑛 → 𝑑 ≤ 𝑛 ) ) |
19 |
18
|
impr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛 ) ) → 𝑑 ≤ 𝑛 ) |
20 |
|
fznnfl |
⊢ ( 𝐴 ∈ ℝ → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ↔ ( 𝑛 ∈ ℕ ∧ 𝑛 ≤ 𝐴 ) ) ) |
21 |
2 20
|
syl |
⊢ ( 𝜑 → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ↔ ( 𝑛 ∈ ℕ ∧ 𝑛 ≤ 𝐴 ) ) ) |
22 |
21
|
simplbda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ≤ 𝐴 ) |
23 |
22
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛 ) ) → 𝑛 ≤ 𝐴 ) |
24 |
12 14 15 19 23
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛 ) ) → 𝑑 ≤ 𝐴 ) |
25 |
24
|
ex |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( 𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛 ) → 𝑑 ≤ 𝐴 ) ) |
26 |
25
|
pm4.71rd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( 𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛 ) ↔ ( 𝑑 ≤ 𝐴 ∧ ( 𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛 ) ) ) ) |
27 |
|
ancom |
⊢ ( ( 𝑑 ≤ 𝐴 ∧ ( 𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛 ) ) ↔ ( ( 𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛 ) ∧ 𝑑 ≤ 𝐴 ) ) |
28 |
|
an32 |
⊢ ( ( ( 𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛 ) ∧ 𝑑 ≤ 𝐴 ) ↔ ( ( 𝑑 ∈ ℕ ∧ 𝑑 ≤ 𝐴 ) ∧ 𝑑 ∥ 𝑛 ) ) |
29 |
27 28
|
bitri |
⊢ ( ( 𝑑 ≤ 𝐴 ∧ ( 𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛 ) ) ↔ ( ( 𝑑 ∈ ℕ ∧ 𝑑 ≤ 𝐴 ) ∧ 𝑑 ∥ 𝑛 ) ) |
30 |
26 29
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( 𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛 ) ↔ ( ( 𝑑 ∈ ℕ ∧ 𝑑 ≤ 𝐴 ) ∧ 𝑑 ∥ 𝑛 ) ) ) |
31 |
|
fznnfl |
⊢ ( 𝐴 ∈ ℝ → ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ↔ ( 𝑑 ∈ ℕ ∧ 𝑑 ≤ 𝐴 ) ) ) |
32 |
2 31
|
syl |
⊢ ( 𝜑 → ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ↔ ( 𝑑 ∈ ℕ ∧ 𝑑 ≤ 𝐴 ) ) ) |
33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ↔ ( 𝑑 ∈ ℕ ∧ 𝑑 ≤ 𝐴 ) ) ) |
34 |
33
|
anbi1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∥ 𝑛 ) ↔ ( ( 𝑑 ∈ ℕ ∧ 𝑑 ≤ 𝐴 ) ∧ 𝑑 ∥ 𝑛 ) ) ) |
35 |
30 34
|
bitr4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( 𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛 ) ↔ ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∥ 𝑛 ) ) ) |
36 |
35
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛 ) ) ↔ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∥ 𝑛 ) ) ) ) |
37 |
|
an12 |
⊢ ( ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∥ 𝑛 ) ) ↔ ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∥ 𝑛 ) ) ) |
38 |
36 37
|
bitrdi |
⊢ ( 𝜑 → ( ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛 ) ) ↔ ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∥ 𝑛 ) ) ) ) |
39 |
|
breq1 |
⊢ ( 𝑥 = 𝑑 → ( 𝑥 ∥ 𝑛 ↔ 𝑑 ∥ 𝑛 ) ) |
40 |
39
|
elrab |
⊢ ( 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ↔ ( 𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛 ) ) |
41 |
40
|
anbi2i |
⊢ ( ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ) ↔ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛 ) ) ) |
42 |
|
breq2 |
⊢ ( 𝑥 = 𝑛 → ( 𝑑 ∥ 𝑥 ↔ 𝑑 ∥ 𝑛 ) ) |
43 |
42
|
elrab |
⊢ ( 𝑛 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑑 ∥ 𝑥 } ↔ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∥ 𝑛 ) ) |
44 |
43
|
anbi2i |
⊢ ( ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑛 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑑 ∥ 𝑥 } ) ↔ ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∥ 𝑛 ) ) ) |
45 |
38 41 44
|
3bitr4g |
⊢ ( 𝜑 → ( ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ) ↔ ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑛 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑑 ∥ 𝑥 } ) ) ) |
46 |
4 4 10 45 3
|
fsumcom2 |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } 𝐵 = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) Σ 𝑛 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑑 ∥ 𝑥 } 𝐵 ) |
47 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ∈ Fin ) |
48 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝐴 ∈ ℝ ) |
49 |
32
|
simprbda |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑑 ∈ ℕ ) |
50 |
|
eqid |
⊢ ( 𝑦 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ↦ ( 𝑑 · 𝑦 ) ) = ( 𝑦 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ↦ ( 𝑑 · 𝑦 ) ) |
51 |
48 49 50
|
dvdsflf1o |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝑦 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ↦ ( 𝑑 · 𝑦 ) ) : ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) –1-1-onto→ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑑 ∥ 𝑥 } ) |
52 |
|
oveq2 |
⊢ ( 𝑦 = 𝑚 → ( 𝑑 · 𝑦 ) = ( 𝑑 · 𝑚 ) ) |
53 |
|
ovex |
⊢ ( 𝑑 · 𝑚 ) ∈ V |
54 |
52 50 53
|
fvmpt |
⊢ ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) → ( ( 𝑦 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ↦ ( 𝑑 · 𝑦 ) ) ‘ 𝑚 ) = ( 𝑑 · 𝑚 ) ) |
55 |
54
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( ( 𝑦 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ↦ ( 𝑑 · 𝑦 ) ) ‘ 𝑚 ) = ( 𝑑 · 𝑚 ) ) |
56 |
45
|
biimpar |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑛 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑑 ∥ 𝑥 } ) ) → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ) ) |
57 |
56 3
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑛 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑑 ∥ 𝑥 } ) ) → 𝐵 ∈ ℂ ) |
58 |
57
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑛 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑑 ∥ 𝑥 } ) → 𝐵 ∈ ℂ ) |
59 |
1 47 51 55 58
|
fsumf1o |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → Σ 𝑛 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑑 ∥ 𝑥 } 𝐵 = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) 𝐶 ) |
60 |
59
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) Σ 𝑛 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑑 ∥ 𝑥 } 𝐵 = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) 𝐶 ) |
61 |
46 60
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } 𝐵 = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) 𝐶 ) |