| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvdsgcdidd.1 | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 2 |  | dvdsgcdidd.2 | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 3 |  | dvdsgcdidd.3 | ⊢ ( 𝜑  →  𝑀  ∥  𝑁 ) | 
						
							| 4 | 2 | zcnd | ⊢ ( 𝜑  →  𝑁  ∈  ℂ ) | 
						
							| 5 | 1 | nncnd | ⊢ ( 𝜑  →  𝑀  ∈  ℂ ) | 
						
							| 6 | 1 | nnne0d | ⊢ ( 𝜑  →  𝑀  ≠  0 ) | 
						
							| 7 | 4 5 6 | divcan1d | ⊢ ( 𝜑  →  ( ( 𝑁  /  𝑀 )  ·  𝑀 )  =  𝑁 ) | 
						
							| 8 | 7 | oveq2d | ⊢ ( 𝜑  →  ( 𝑀  gcd  ( ( 𝑁  /  𝑀 )  ·  𝑀 ) )  =  ( 𝑀  gcd  𝑁 ) ) | 
						
							| 9 | 1 | nnnn0d | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 10 | 1 | nnzd | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 11 |  | dvdsval2 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑀  ≠  0  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  ∥  𝑁  ↔  ( 𝑁  /  𝑀 )  ∈  ℤ ) ) | 
						
							| 12 | 10 6 2 11 | syl3anc | ⊢ ( 𝜑  →  ( 𝑀  ∥  𝑁  ↔  ( 𝑁  /  𝑀 )  ∈  ℤ ) ) | 
						
							| 13 | 3 12 | mpbid | ⊢ ( 𝜑  →  ( 𝑁  /  𝑀 )  ∈  ℤ ) | 
						
							| 14 | 9 13 | gcdmultipled | ⊢ ( 𝜑  →  ( 𝑀  gcd  ( ( 𝑁  /  𝑀 )  ·  𝑀 ) )  =  𝑀 ) | 
						
							| 15 | 8 14 | eqtr3d | ⊢ ( 𝜑  →  ( 𝑀  gcd  𝑁 )  =  𝑀 ) |