| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvds0 | ⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∥  0 ) | 
						
							| 2 | 1 | ad2antrr | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  𝑀  ∥  0 ) | 
						
							| 3 |  | oveq1 | ⊢ ( 𝑀  =  0  →  ( 𝑀  lcm  𝑁 )  =  ( 0  lcm  𝑁 ) ) | 
						
							| 4 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 5 |  | lcmcom | ⊢ ( ( 𝑁  ∈  ℤ  ∧  0  ∈  ℤ )  →  ( 𝑁  lcm  0 )  =  ( 0  lcm  𝑁 ) ) | 
						
							| 6 | 4 5 | mpan2 | ⊢ ( 𝑁  ∈  ℤ  →  ( 𝑁  lcm  0 )  =  ( 0  lcm  𝑁 ) ) | 
						
							| 7 |  | lcm0val | ⊢ ( 𝑁  ∈  ℤ  →  ( 𝑁  lcm  0 )  =  0 ) | 
						
							| 8 | 6 7 | eqtr3d | ⊢ ( 𝑁  ∈  ℤ  →  ( 0  lcm  𝑁 )  =  0 ) | 
						
							| 9 | 3 8 | sylan9eqr | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  =  0 )  →  ( 𝑀  lcm  𝑁 )  =  0 ) | 
						
							| 10 | 9 | adantll | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑀  =  0 )  →  ( 𝑀  lcm  𝑁 )  =  0 ) | 
						
							| 11 |  | oveq2 | ⊢ ( 𝑁  =  0  →  ( 𝑀  lcm  𝑁 )  =  ( 𝑀  lcm  0 ) ) | 
						
							| 12 |  | lcm0val | ⊢ ( 𝑀  ∈  ℤ  →  ( 𝑀  lcm  0 )  =  0 ) | 
						
							| 13 | 11 12 | sylan9eqr | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  =  0 )  →  ( 𝑀  lcm  𝑁 )  =  0 ) | 
						
							| 14 | 13 | adantlr | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑁  =  0 )  →  ( 𝑀  lcm  𝑁 )  =  0 ) | 
						
							| 15 | 10 14 | jaodan | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  ( 𝑀  lcm  𝑁 )  =  0 ) | 
						
							| 16 | 2 15 | breqtrrd | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  𝑀  ∥  ( 𝑀  lcm  𝑁 ) ) | 
						
							| 17 |  | dvds0 | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∥  0 ) | 
						
							| 18 | 17 | ad2antlr | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  𝑁  ∥  0 ) | 
						
							| 19 | 18 15 | breqtrrd | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  𝑁  ∥  ( 𝑀  lcm  𝑁 ) ) | 
						
							| 20 | 16 19 | jca | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  ( 𝑀  ∥  ( 𝑀  lcm  𝑁 )  ∧  𝑁  ∥  ( 𝑀  lcm  𝑁 ) ) ) | 
						
							| 21 |  | lcmcllem | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  ( 𝑀  lcm  𝑁 )  ∈  { 𝑛  ∈  ℕ  ∣  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) } ) | 
						
							| 22 |  | lcmn0cl | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  ( 𝑀  lcm  𝑁 )  ∈  ℕ ) | 
						
							| 23 |  | breq2 | ⊢ ( 𝑛  =  ( 𝑀  lcm  𝑁 )  →  ( 𝑀  ∥  𝑛  ↔  𝑀  ∥  ( 𝑀  lcm  𝑁 ) ) ) | 
						
							| 24 |  | breq2 | ⊢ ( 𝑛  =  ( 𝑀  lcm  𝑁 )  →  ( 𝑁  ∥  𝑛  ↔  𝑁  ∥  ( 𝑀  lcm  𝑁 ) ) ) | 
						
							| 25 | 23 24 | anbi12d | ⊢ ( 𝑛  =  ( 𝑀  lcm  𝑁 )  →  ( ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 )  ↔  ( 𝑀  ∥  ( 𝑀  lcm  𝑁 )  ∧  𝑁  ∥  ( 𝑀  lcm  𝑁 ) ) ) ) | 
						
							| 26 | 25 | elrab3 | ⊢ ( ( 𝑀  lcm  𝑁 )  ∈  ℕ  →  ( ( 𝑀  lcm  𝑁 )  ∈  { 𝑛  ∈  ℕ  ∣  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) }  ↔  ( 𝑀  ∥  ( 𝑀  lcm  𝑁 )  ∧  𝑁  ∥  ( 𝑀  lcm  𝑁 ) ) ) ) | 
						
							| 27 | 22 26 | syl | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  ( ( 𝑀  lcm  𝑁 )  ∈  { 𝑛  ∈  ℕ  ∣  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) }  ↔  ( 𝑀  ∥  ( 𝑀  lcm  𝑁 )  ∧  𝑁  ∥  ( 𝑀  lcm  𝑁 ) ) ) ) | 
						
							| 28 | 21 27 | mpbid | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  ( 𝑀  ∥  ( 𝑀  lcm  𝑁 )  ∧  𝑁  ∥  ( 𝑀  lcm  𝑁 ) ) ) | 
						
							| 29 | 20 28 | pm2.61dan | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  ∥  ( 𝑀  lcm  𝑁 )  ∧  𝑁  ∥  ( 𝑀  lcm  𝑁 ) ) ) |