Step |
Hyp |
Ref |
Expression |
1 |
|
breq2 |
⊢ ( 𝑀 = if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) → ( 𝑁 < 𝑀 ↔ 𝑁 < if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) ) ) |
2 |
|
oveq2 |
⊢ ( 𝑀 = if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) → ( 𝑛 · 𝑀 ) = ( 𝑛 · if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) ) ) |
3 |
2
|
neeq1d |
⊢ ( 𝑀 = if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) → ( ( 𝑛 · 𝑀 ) ≠ 𝑁 ↔ ( 𝑛 · if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) ) ≠ 𝑁 ) ) |
4 |
1 3
|
imbi12d |
⊢ ( 𝑀 = if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) → ( ( 𝑁 < 𝑀 → ( 𝑛 · 𝑀 ) ≠ 𝑁 ) ↔ ( 𝑁 < if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) → ( 𝑛 · if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) ) ≠ 𝑁 ) ) ) |
5 |
|
breq1 |
⊢ ( 𝑁 = if ( 𝑁 ∈ ℕ , 𝑁 , 1 ) → ( 𝑁 < if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) ↔ if ( 𝑁 ∈ ℕ , 𝑁 , 1 ) < if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) ) ) |
6 |
|
neeq2 |
⊢ ( 𝑁 = if ( 𝑁 ∈ ℕ , 𝑁 , 1 ) → ( ( 𝑛 · if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) ) ≠ 𝑁 ↔ ( 𝑛 · if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) ) ≠ if ( 𝑁 ∈ ℕ , 𝑁 , 1 ) ) ) |
7 |
5 6
|
imbi12d |
⊢ ( 𝑁 = if ( 𝑁 ∈ ℕ , 𝑁 , 1 ) → ( ( 𝑁 < if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) → ( 𝑛 · if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) ) ≠ 𝑁 ) ↔ ( if ( 𝑁 ∈ ℕ , 𝑁 , 1 ) < if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) → ( 𝑛 · if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) ) ≠ if ( 𝑁 ∈ ℕ , 𝑁 , 1 ) ) ) ) |
8 |
|
oveq1 |
⊢ ( 𝑛 = if ( 𝑛 ∈ ℤ , 𝑛 , 1 ) → ( 𝑛 · if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) ) = ( if ( 𝑛 ∈ ℤ , 𝑛 , 1 ) · if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) ) ) |
9 |
8
|
neeq1d |
⊢ ( 𝑛 = if ( 𝑛 ∈ ℤ , 𝑛 , 1 ) → ( ( 𝑛 · if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) ) ≠ if ( 𝑁 ∈ ℕ , 𝑁 , 1 ) ↔ ( if ( 𝑛 ∈ ℤ , 𝑛 , 1 ) · if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) ) ≠ if ( 𝑁 ∈ ℕ , 𝑁 , 1 ) ) ) |
10 |
9
|
imbi2d |
⊢ ( 𝑛 = if ( 𝑛 ∈ ℤ , 𝑛 , 1 ) → ( ( if ( 𝑁 ∈ ℕ , 𝑁 , 1 ) < if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) → ( 𝑛 · if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) ) ≠ if ( 𝑁 ∈ ℕ , 𝑁 , 1 ) ) ↔ ( if ( 𝑁 ∈ ℕ , 𝑁 , 1 ) < if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) → ( if ( 𝑛 ∈ ℤ , 𝑛 , 1 ) · if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) ) ≠ if ( 𝑁 ∈ ℕ , 𝑁 , 1 ) ) ) ) |
11 |
|
1z |
⊢ 1 ∈ ℤ |
12 |
11
|
elimel |
⊢ if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) ∈ ℤ |
13 |
|
1nn |
⊢ 1 ∈ ℕ |
14 |
13
|
elimel |
⊢ if ( 𝑁 ∈ ℕ , 𝑁 , 1 ) ∈ ℕ |
15 |
11
|
elimel |
⊢ if ( 𝑛 ∈ ℤ , 𝑛 , 1 ) ∈ ℤ |
16 |
12 14 15
|
dvdslelem |
⊢ ( if ( 𝑁 ∈ ℕ , 𝑁 , 1 ) < if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) → ( if ( 𝑛 ∈ ℤ , 𝑛 , 1 ) · if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) ) ≠ if ( 𝑁 ∈ ℕ , 𝑁 , 1 ) ) |
17 |
4 7 10 16
|
dedth3h |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) → ( 𝑁 < 𝑀 → ( 𝑛 · 𝑀 ) ≠ 𝑁 ) ) |
18 |
17
|
3expia |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑛 ∈ ℤ → ( 𝑁 < 𝑀 → ( 𝑛 · 𝑀 ) ≠ 𝑁 ) ) ) |
19 |
18
|
com23 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 < 𝑀 → ( 𝑛 ∈ ℤ → ( 𝑛 · 𝑀 ) ≠ 𝑁 ) ) ) |
20 |
19
|
3impia |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 < 𝑀 ) → ( 𝑛 ∈ ℤ → ( 𝑛 · 𝑀 ) ≠ 𝑁 ) ) |
21 |
20
|
imp |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 < 𝑀 ) ∧ 𝑛 ∈ ℤ ) → ( 𝑛 · 𝑀 ) ≠ 𝑁 ) |
22 |
21
|
neneqd |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 < 𝑀 ) ∧ 𝑛 ∈ ℤ ) → ¬ ( 𝑛 · 𝑀 ) = 𝑁 ) |
23 |
22
|
nrexdv |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 < 𝑀 ) → ¬ ∃ 𝑛 ∈ ℤ ( 𝑛 · 𝑀 ) = 𝑁 ) |
24 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
25 |
|
divides |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 · 𝑀 ) = 𝑁 ) ) |
26 |
24 25
|
sylan2 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 · 𝑀 ) = 𝑁 ) ) |
27 |
26
|
3adant3 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 < 𝑀 ) → ( 𝑀 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 · 𝑀 ) = 𝑁 ) ) |
28 |
23 27
|
mtbird |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 < 𝑀 ) → ¬ 𝑀 ∥ 𝑁 ) |
29 |
28
|
3expia |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 < 𝑀 → ¬ 𝑀 ∥ 𝑁 ) ) |
30 |
29
|
con2d |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 ∥ 𝑁 → ¬ 𝑁 < 𝑀 ) ) |
31 |
|
zre |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) |
32 |
|
nnre |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) |
33 |
|
lenlt |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑀 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑀 ) ) |
34 |
31 32 33
|
syl2an |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑀 ) ) |
35 |
30 34
|
sylibrd |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 ∥ 𝑁 → 𝑀 ≤ 𝑁 ) ) |