Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ { 𝑛 ∈ ℤ ∣ ∀ 𝑧 ∈ { 𝑀 , 𝑁 } 𝑛 ∥ 𝑧 } = { 𝑛 ∈ ℤ ∣ ∀ 𝑧 ∈ { 𝑀 , 𝑁 } 𝑛 ∥ 𝑧 } |
2 |
|
eqid |
⊢ { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } = { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } |
3 |
1 2
|
gcdcllem3 |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ∈ ℕ ∧ ( sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ∥ 𝑀 ∧ sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ∥ 𝑁 ) ∧ ( ( 𝐾 ∈ ℤ ∧ 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁 ) → 𝐾 ≤ sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ) ) ) |
4 |
3
|
simp3d |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( ( 𝐾 ∈ ℤ ∧ 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁 ) → 𝐾 ≤ sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ) ) |
5 |
|
gcdn0val |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( 𝑀 gcd 𝑁 ) = sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ) |
6 |
5
|
breq2d |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( 𝐾 ≤ ( 𝑀 gcd 𝑁 ) ↔ 𝐾 ≤ sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ) ) |
7 |
4 6
|
sylibrd |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( ( 𝐾 ∈ ℤ ∧ 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁 ) → 𝐾 ≤ ( 𝑀 gcd 𝑁 ) ) ) |
8 |
7
|
com12 |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁 ) → ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → 𝐾 ≤ ( 𝑀 gcd 𝑁 ) ) ) |
9 |
8
|
3expb |
⊢ ( ( 𝐾 ∈ ℤ ∧ ( 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁 ) ) → ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → 𝐾 ≤ ( 𝑀 gcd 𝑁 ) ) ) |
10 |
9
|
com12 |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( ( 𝐾 ∈ ℤ ∧ ( 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁 ) ) → 𝐾 ≤ ( 𝑀 gcd 𝑁 ) ) ) |
11 |
10
|
exp4b |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( 𝐾 ∈ ℤ → ( ( 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁 ) → 𝐾 ≤ ( 𝑀 gcd 𝑁 ) ) ) ) ) |
12 |
11
|
com23 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 ∈ ℤ → ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( ( 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁 ) → 𝐾 ≤ ( 𝑀 gcd 𝑁 ) ) ) ) ) |
13 |
12
|
impcom |
⊢ ( ( 𝐾 ∈ ℤ ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( ( 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁 ) → 𝐾 ≤ ( 𝑀 gcd 𝑁 ) ) ) ) |
14 |
13
|
3impb |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( ( 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁 ) → 𝐾 ≤ ( 𝑀 gcd 𝑁 ) ) ) ) |
15 |
14
|
imp |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( ( 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁 ) → 𝐾 ≤ ( 𝑀 gcd 𝑁 ) ) ) |