| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							eqid | 
							⊢ { 𝑛  ∈  ℤ  ∣  ∀ 𝑧  ∈  { 𝑀 ,  𝑁 } 𝑛  ∥  𝑧 }  =  { 𝑛  ∈  ℤ  ∣  ∀ 𝑧  ∈  { 𝑀 ,  𝑁 } 𝑛  ∥  𝑧 }  | 
						
						
							| 2 | 
							
								
							 | 
							eqid | 
							⊢ { 𝑛  ∈  ℤ  ∣  ( 𝑛  ∥  𝑀  ∧  𝑛  ∥  𝑁 ) }  =  { 𝑛  ∈  ℤ  ∣  ( 𝑛  ∥  𝑀  ∧  𝑛  ∥  𝑁 ) }  | 
						
						
							| 3 | 
							
								1 2
							 | 
							gcdcllem3 | 
							⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∧  𝑁  =  0 ) )  →  ( sup ( { 𝑛  ∈  ℤ  ∣  ( 𝑛  ∥  𝑀  ∧  𝑛  ∥  𝑁 ) } ,  ℝ ,   <  )  ∈  ℕ  ∧  ( sup ( { 𝑛  ∈  ℤ  ∣  ( 𝑛  ∥  𝑀  ∧  𝑛  ∥  𝑁 ) } ,  ℝ ,   <  )  ∥  𝑀  ∧  sup ( { 𝑛  ∈  ℤ  ∣  ( 𝑛  ∥  𝑀  ∧  𝑛  ∥  𝑁 ) } ,  ℝ ,   <  )  ∥  𝑁 )  ∧  ( ( 𝐾  ∈  ℤ  ∧  𝐾  ∥  𝑀  ∧  𝐾  ∥  𝑁 )  →  𝐾  ≤  sup ( { 𝑛  ∈  ℤ  ∣  ( 𝑛  ∥  𝑀  ∧  𝑛  ∥  𝑁 ) } ,  ℝ ,   <  ) ) ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							simp3d | 
							⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∧  𝑁  =  0 ) )  →  ( ( 𝐾  ∈  ℤ  ∧  𝐾  ∥  𝑀  ∧  𝐾  ∥  𝑁 )  →  𝐾  ≤  sup ( { 𝑛  ∈  ℤ  ∣  ( 𝑛  ∥  𝑀  ∧  𝑛  ∥  𝑁 ) } ,  ℝ ,   <  ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							gcdn0val | 
							⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∧  𝑁  =  0 ) )  →  ( 𝑀  gcd  𝑁 )  =  sup ( { 𝑛  ∈  ℤ  ∣  ( 𝑛  ∥  𝑀  ∧  𝑛  ∥  𝑁 ) } ,  ℝ ,   <  ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							breq2d | 
							⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∧  𝑁  =  0 ) )  →  ( 𝐾  ≤  ( 𝑀  gcd  𝑁 )  ↔  𝐾  ≤  sup ( { 𝑛  ∈  ℤ  ∣  ( 𝑛  ∥  𝑀  ∧  𝑛  ∥  𝑁 ) } ,  ℝ ,   <  ) ) )  | 
						
						
							| 7 | 
							
								4 6
							 | 
							sylibrd | 
							⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∧  𝑁  =  0 ) )  →  ( ( 𝐾  ∈  ℤ  ∧  𝐾  ∥  𝑀  ∧  𝐾  ∥  𝑁 )  →  𝐾  ≤  ( 𝑀  gcd  𝑁 ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							com12 | 
							⊢ ( ( 𝐾  ∈  ℤ  ∧  𝐾  ∥  𝑀  ∧  𝐾  ∥  𝑁 )  →  ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∧  𝑁  =  0 ) )  →  𝐾  ≤  ( 𝑀  gcd  𝑁 ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							3expb | 
							⊢ ( ( 𝐾  ∈  ℤ  ∧  ( 𝐾  ∥  𝑀  ∧  𝐾  ∥  𝑁 ) )  →  ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∧  𝑁  =  0 ) )  →  𝐾  ≤  ( 𝑀  gcd  𝑁 ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							com12 | 
							⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∧  𝑁  =  0 ) )  →  ( ( 𝐾  ∈  ℤ  ∧  ( 𝐾  ∥  𝑀  ∧  𝐾  ∥  𝑁 ) )  →  𝐾  ≤  ( 𝑀  gcd  𝑁 ) ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							exp4b | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ¬  ( 𝑀  =  0  ∧  𝑁  =  0 )  →  ( 𝐾  ∈  ℤ  →  ( ( 𝐾  ∥  𝑀  ∧  𝐾  ∥  𝑁 )  →  𝐾  ≤  ( 𝑀  gcd  𝑁 ) ) ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							com23 | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝐾  ∈  ℤ  →  ( ¬  ( 𝑀  =  0  ∧  𝑁  =  0 )  →  ( ( 𝐾  ∥  𝑀  ∧  𝐾  ∥  𝑁 )  →  𝐾  ≤  ( 𝑀  gcd  𝑁 ) ) ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							impcom | 
							⊢ ( ( 𝐾  ∈  ℤ  ∧  ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  →  ( ¬  ( 𝑀  =  0  ∧  𝑁  =  0 )  →  ( ( 𝐾  ∥  𝑀  ∧  𝐾  ∥  𝑁 )  →  𝐾  ≤  ( 𝑀  gcd  𝑁 ) ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							3impb | 
							⊢ ( ( 𝐾  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ¬  ( 𝑀  =  0  ∧  𝑁  =  0 )  →  ( ( 𝐾  ∥  𝑀  ∧  𝐾  ∥  𝑁 )  →  𝐾  ≤  ( 𝑀  gcd  𝑁 ) ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							imp | 
							⊢ ( ( ( 𝐾  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∧  𝑁  =  0 ) )  →  ( ( 𝐾  ∥  𝑀  ∧  𝐾  ∥  𝑁 )  →  𝐾  ≤  ( 𝑀  gcd  𝑁 ) ) )  |