Step |
Hyp |
Ref |
Expression |
1 |
|
dvdslelem.1 |
⊢ 𝑀 ∈ ℤ |
2 |
|
dvdslelem.2 |
⊢ 𝑁 ∈ ℕ |
3 |
|
dvdslelem.3 |
⊢ 𝐾 ∈ ℤ |
4 |
3
|
zrei |
⊢ 𝐾 ∈ ℝ |
5 |
|
0re |
⊢ 0 ∈ ℝ |
6 |
|
lelttric |
⊢ ( ( 𝐾 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝐾 ≤ 0 ∨ 0 < 𝐾 ) ) |
7 |
4 5 6
|
mp2an |
⊢ ( 𝐾 ≤ 0 ∨ 0 < 𝐾 ) |
8 |
|
zgt0ge1 |
⊢ ( 𝐾 ∈ ℤ → ( 0 < 𝐾 ↔ 1 ≤ 𝐾 ) ) |
9 |
3 8
|
ax-mp |
⊢ ( 0 < 𝐾 ↔ 1 ≤ 𝐾 ) |
10 |
9
|
orbi2i |
⊢ ( ( 𝐾 ≤ 0 ∨ 0 < 𝐾 ) ↔ ( 𝐾 ≤ 0 ∨ 1 ≤ 𝐾 ) ) |
11 |
7 10
|
mpbi |
⊢ ( 𝐾 ≤ 0 ∨ 1 ≤ 𝐾 ) |
12 |
|
le0neg1 |
⊢ ( 𝐾 ∈ ℝ → ( 𝐾 ≤ 0 ↔ 0 ≤ - 𝐾 ) ) |
13 |
4 12
|
ax-mp |
⊢ ( 𝐾 ≤ 0 ↔ 0 ≤ - 𝐾 ) |
14 |
2
|
nngt0i |
⊢ 0 < 𝑁 |
15 |
2
|
nnrei |
⊢ 𝑁 ∈ ℝ |
16 |
1
|
zrei |
⊢ 𝑀 ∈ ℝ |
17 |
5 15 16
|
lttri |
⊢ ( ( 0 < 𝑁 ∧ 𝑁 < 𝑀 ) → 0 < 𝑀 ) |
18 |
14 17
|
mpan |
⊢ ( 𝑁 < 𝑀 → 0 < 𝑀 ) |
19 |
5 16
|
ltlei |
⊢ ( 0 < 𝑀 → 0 ≤ 𝑀 ) |
20 |
18 19
|
syl |
⊢ ( 𝑁 < 𝑀 → 0 ≤ 𝑀 ) |
21 |
4
|
renegcli |
⊢ - 𝐾 ∈ ℝ |
22 |
21 16
|
mulge0i |
⊢ ( ( 0 ≤ - 𝐾 ∧ 0 ≤ 𝑀 ) → 0 ≤ ( - 𝐾 · 𝑀 ) ) |
23 |
20 22
|
sylan2 |
⊢ ( ( 0 ≤ - 𝐾 ∧ 𝑁 < 𝑀 ) → 0 ≤ ( - 𝐾 · 𝑀 ) ) |
24 |
13 23
|
sylanb |
⊢ ( ( 𝐾 ≤ 0 ∧ 𝑁 < 𝑀 ) → 0 ≤ ( - 𝐾 · 𝑀 ) ) |
25 |
24
|
expcom |
⊢ ( 𝑁 < 𝑀 → ( 𝐾 ≤ 0 → 0 ≤ ( - 𝐾 · 𝑀 ) ) ) |
26 |
4 16
|
remulcli |
⊢ ( 𝐾 · 𝑀 ) ∈ ℝ |
27 |
|
le0neg1 |
⊢ ( ( 𝐾 · 𝑀 ) ∈ ℝ → ( ( 𝐾 · 𝑀 ) ≤ 0 ↔ 0 ≤ - ( 𝐾 · 𝑀 ) ) ) |
28 |
26 27
|
ax-mp |
⊢ ( ( 𝐾 · 𝑀 ) ≤ 0 ↔ 0 ≤ - ( 𝐾 · 𝑀 ) ) |
29 |
4
|
recni |
⊢ 𝐾 ∈ ℂ |
30 |
16
|
recni |
⊢ 𝑀 ∈ ℂ |
31 |
29 30
|
mulneg1i |
⊢ ( - 𝐾 · 𝑀 ) = - ( 𝐾 · 𝑀 ) |
32 |
31
|
breq2i |
⊢ ( 0 ≤ ( - 𝐾 · 𝑀 ) ↔ 0 ≤ - ( 𝐾 · 𝑀 ) ) |
33 |
28 32
|
bitr4i |
⊢ ( ( 𝐾 · 𝑀 ) ≤ 0 ↔ 0 ≤ ( - 𝐾 · 𝑀 ) ) |
34 |
25 33
|
syl6ibr |
⊢ ( 𝑁 < 𝑀 → ( 𝐾 ≤ 0 → ( 𝐾 · 𝑀 ) ≤ 0 ) ) |
35 |
26 5 15
|
lelttri |
⊢ ( ( ( 𝐾 · 𝑀 ) ≤ 0 ∧ 0 < 𝑁 ) → ( 𝐾 · 𝑀 ) < 𝑁 ) |
36 |
14 35
|
mpan2 |
⊢ ( ( 𝐾 · 𝑀 ) ≤ 0 → ( 𝐾 · 𝑀 ) < 𝑁 ) |
37 |
34 36
|
syl6 |
⊢ ( 𝑁 < 𝑀 → ( 𝐾 ≤ 0 → ( 𝐾 · 𝑀 ) < 𝑁 ) ) |
38 |
|
lemulge12 |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ) ∧ ( 0 ≤ 𝑀 ∧ 1 ≤ 𝐾 ) ) → 𝑀 ≤ ( 𝐾 · 𝑀 ) ) |
39 |
16 4 38
|
mpanl12 |
⊢ ( ( 0 ≤ 𝑀 ∧ 1 ≤ 𝐾 ) → 𝑀 ≤ ( 𝐾 · 𝑀 ) ) |
40 |
20 39
|
sylan |
⊢ ( ( 𝑁 < 𝑀 ∧ 1 ≤ 𝐾 ) → 𝑀 ≤ ( 𝐾 · 𝑀 ) ) |
41 |
40
|
ex |
⊢ ( 𝑁 < 𝑀 → ( 1 ≤ 𝐾 → 𝑀 ≤ ( 𝐾 · 𝑀 ) ) ) |
42 |
15 16 26
|
ltletri |
⊢ ( ( 𝑁 < 𝑀 ∧ 𝑀 ≤ ( 𝐾 · 𝑀 ) ) → 𝑁 < ( 𝐾 · 𝑀 ) ) |
43 |
42
|
ex |
⊢ ( 𝑁 < 𝑀 → ( 𝑀 ≤ ( 𝐾 · 𝑀 ) → 𝑁 < ( 𝐾 · 𝑀 ) ) ) |
44 |
41 43
|
syld |
⊢ ( 𝑁 < 𝑀 → ( 1 ≤ 𝐾 → 𝑁 < ( 𝐾 · 𝑀 ) ) ) |
45 |
37 44
|
orim12d |
⊢ ( 𝑁 < 𝑀 → ( ( 𝐾 ≤ 0 ∨ 1 ≤ 𝐾 ) → ( ( 𝐾 · 𝑀 ) < 𝑁 ∨ 𝑁 < ( 𝐾 · 𝑀 ) ) ) ) |
46 |
11 45
|
mpi |
⊢ ( 𝑁 < 𝑀 → ( ( 𝐾 · 𝑀 ) < 𝑁 ∨ 𝑁 < ( 𝐾 · 𝑀 ) ) ) |
47 |
26 15
|
lttri2i |
⊢ ( ( 𝐾 · 𝑀 ) ≠ 𝑁 ↔ ( ( 𝐾 · 𝑀 ) < 𝑁 ∨ 𝑁 < ( 𝐾 · 𝑀 ) ) ) |
48 |
46 47
|
sylibr |
⊢ ( 𝑁 < 𝑀 → ( 𝐾 · 𝑀 ) ≠ 𝑁 ) |