Step |
Hyp |
Ref |
Expression |
1 |
|
dvdszrcl |
⊢ ( 𝑀 ∥ 𝑁 → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
2 |
1
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑀 ∥ 𝑁 ) → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
3 |
|
dvdsval3 |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ ( 𝑁 mod 𝑀 ) = 0 ) ) |
4 |
3
|
biimpd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 → ( 𝑁 mod 𝑀 ) = 0 ) ) |
5 |
4
|
expcom |
⊢ ( 𝑁 ∈ ℤ → ( 𝑀 ∈ ℕ → ( 𝑀 ∥ 𝑁 → ( 𝑁 mod 𝑀 ) = 0 ) ) ) |
6 |
5
|
impd |
⊢ ( 𝑁 ∈ ℤ → ( ( 𝑀 ∈ ℕ ∧ 𝑀 ∥ 𝑁 ) → ( 𝑁 mod 𝑀 ) = 0 ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 ∈ ℕ ∧ 𝑀 ∥ 𝑁 ) → ( 𝑁 mod 𝑀 ) = 0 ) ) |
8 |
2 7
|
mpcom |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑀 ∥ 𝑁 ) → ( 𝑁 mod 𝑀 ) = 0 ) |