Step |
Hyp |
Ref |
Expression |
1 |
|
dvdszrcl |
⊢ ( 𝑁 ∥ 𝐴 → ( 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ) |
2 |
|
dvdsmod0 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝐴 ) → ( 𝐴 mod 𝑁 ) = 0 ) |
3 |
2
|
3ad2antl2 |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ 𝑁 ∥ 𝐴 ) → ( 𝐴 mod 𝑁 ) = 0 ) |
4 |
3
|
ex |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝑁 ∥ 𝐴 → ( 𝐴 mod 𝑁 ) = 0 ) ) |
5 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( 𝐴 mod 𝑁 ) = 0 ) → 𝐵 ∈ ℕ ) |
6 |
5
|
0expd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( 𝐴 mod 𝑁 ) = 0 ) → ( 0 ↑ 𝐵 ) = 0 ) |
7 |
6
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( 𝐴 mod 𝑁 ) = 0 ) → ( ( 0 ↑ 𝐵 ) mod 𝑁 ) = ( 0 mod 𝑁 ) ) |
8 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( 𝐴 mod 𝑁 ) = 0 ) → 𝐴 ∈ ℤ ) |
9 |
|
0zd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( 𝐴 mod 𝑁 ) = 0 ) → 0 ∈ ℤ ) |
10 |
|
nnnn0 |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℕ0 ) |
11 |
10
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 𝐵 ∈ ℕ0 ) |
12 |
11
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( 𝐴 mod 𝑁 ) = 0 ) → 𝐵 ∈ ℕ0 ) |
13 |
|
nnrp |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ+ ) |
14 |
13
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 𝑁 ∈ ℝ+ ) |
15 |
14
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( 𝐴 mod 𝑁 ) = 0 ) → 𝑁 ∈ ℝ+ ) |
16 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( 𝐴 mod 𝑁 ) = 0 ) → ( 𝐴 mod 𝑁 ) = 0 ) |
17 |
|
0mod |
⊢ ( 𝑁 ∈ ℝ+ → ( 0 mod 𝑁 ) = 0 ) |
18 |
15 17
|
syl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( 𝐴 mod 𝑁 ) = 0 ) → ( 0 mod 𝑁 ) = 0 ) |
19 |
16 18
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( 𝐴 mod 𝑁 ) = 0 ) → ( 𝐴 mod 𝑁 ) = ( 0 mod 𝑁 ) ) |
20 |
|
modexp |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 0 ∈ ℤ ) ∧ ( 𝐵 ∈ ℕ0 ∧ 𝑁 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑁 ) = ( 0 mod 𝑁 ) ) → ( ( 𝐴 ↑ 𝐵 ) mod 𝑁 ) = ( ( 0 ↑ 𝐵 ) mod 𝑁 ) ) |
21 |
8 9 12 15 19 20
|
syl221anc |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( 𝐴 mod 𝑁 ) = 0 ) → ( ( 𝐴 ↑ 𝐵 ) mod 𝑁 ) = ( ( 0 ↑ 𝐵 ) mod 𝑁 ) ) |
22 |
7 21 19
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( 𝐴 mod 𝑁 ) = 0 ) → ( ( 𝐴 ↑ 𝐵 ) mod 𝑁 ) = ( 𝐴 mod 𝑁 ) ) |
23 |
22
|
ex |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 mod 𝑁 ) = 0 → ( ( 𝐴 ↑ 𝐵 ) mod 𝑁 ) = ( 𝐴 mod 𝑁 ) ) ) |
24 |
4 23
|
syld |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝑁 ∥ 𝐴 → ( ( 𝐴 ↑ 𝐵 ) mod 𝑁 ) = ( 𝐴 mod 𝑁 ) ) ) |
25 |
24
|
3exp |
⊢ ( 𝐴 ∈ ℤ → ( 𝑁 ∈ ℕ → ( 𝐵 ∈ ℕ → ( 𝑁 ∥ 𝐴 → ( ( 𝐴 ↑ 𝐵 ) mod 𝑁 ) = ( 𝐴 mod 𝑁 ) ) ) ) ) |
26 |
25
|
com24 |
⊢ ( 𝐴 ∈ ℤ → ( 𝑁 ∥ 𝐴 → ( 𝐵 ∈ ℕ → ( 𝑁 ∈ ℕ → ( ( 𝐴 ↑ 𝐵 ) mod 𝑁 ) = ( 𝐴 mod 𝑁 ) ) ) ) ) |
27 |
26
|
adantl |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 𝑁 ∥ 𝐴 → ( 𝐵 ∈ ℕ → ( 𝑁 ∈ ℕ → ( ( 𝐴 ↑ 𝐵 ) mod 𝑁 ) = ( 𝐴 mod 𝑁 ) ) ) ) ) |
28 |
1 27
|
mpcom |
⊢ ( 𝑁 ∥ 𝐴 → ( 𝐵 ∈ ℕ → ( 𝑁 ∈ ℕ → ( ( 𝐴 ↑ 𝐵 ) mod 𝑁 ) = ( 𝐴 mod 𝑁 ) ) ) ) |
29 |
28
|
3imp31 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∥ 𝐴 ) → ( ( 𝐴 ↑ 𝐵 ) mod 𝑁 ) = ( 𝐴 mod 𝑁 ) ) |