| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvdszrcl |
⊢ ( 𝑁 ∥ 𝐴 → ( 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ) |
| 2 |
|
dvdsmod0 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝐴 ) → ( 𝐴 mod 𝑁 ) = 0 ) |
| 3 |
2
|
3ad2antl2 |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ 𝑁 ∥ 𝐴 ) → ( 𝐴 mod 𝑁 ) = 0 ) |
| 4 |
3
|
ex |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝑁 ∥ 𝐴 → ( 𝐴 mod 𝑁 ) = 0 ) ) |
| 5 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( 𝐴 mod 𝑁 ) = 0 ) → 𝐵 ∈ ℕ ) |
| 6 |
5
|
0expd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( 𝐴 mod 𝑁 ) = 0 ) → ( 0 ↑ 𝐵 ) = 0 ) |
| 7 |
6
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( 𝐴 mod 𝑁 ) = 0 ) → ( ( 0 ↑ 𝐵 ) mod 𝑁 ) = ( 0 mod 𝑁 ) ) |
| 8 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( 𝐴 mod 𝑁 ) = 0 ) → 𝐴 ∈ ℤ ) |
| 9 |
|
0zd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( 𝐴 mod 𝑁 ) = 0 ) → 0 ∈ ℤ ) |
| 10 |
|
nnnn0 |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℕ0 ) |
| 11 |
10
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 𝐵 ∈ ℕ0 ) |
| 12 |
11
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( 𝐴 mod 𝑁 ) = 0 ) → 𝐵 ∈ ℕ0 ) |
| 13 |
|
nnrp |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ+ ) |
| 14 |
13
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 𝑁 ∈ ℝ+ ) |
| 15 |
14
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( 𝐴 mod 𝑁 ) = 0 ) → 𝑁 ∈ ℝ+ ) |
| 16 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( 𝐴 mod 𝑁 ) = 0 ) → ( 𝐴 mod 𝑁 ) = 0 ) |
| 17 |
|
0mod |
⊢ ( 𝑁 ∈ ℝ+ → ( 0 mod 𝑁 ) = 0 ) |
| 18 |
15 17
|
syl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( 𝐴 mod 𝑁 ) = 0 ) → ( 0 mod 𝑁 ) = 0 ) |
| 19 |
16 18
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( 𝐴 mod 𝑁 ) = 0 ) → ( 𝐴 mod 𝑁 ) = ( 0 mod 𝑁 ) ) |
| 20 |
|
modexp |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 0 ∈ ℤ ) ∧ ( 𝐵 ∈ ℕ0 ∧ 𝑁 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑁 ) = ( 0 mod 𝑁 ) ) → ( ( 𝐴 ↑ 𝐵 ) mod 𝑁 ) = ( ( 0 ↑ 𝐵 ) mod 𝑁 ) ) |
| 21 |
8 9 12 15 19 20
|
syl221anc |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( 𝐴 mod 𝑁 ) = 0 ) → ( ( 𝐴 ↑ 𝐵 ) mod 𝑁 ) = ( ( 0 ↑ 𝐵 ) mod 𝑁 ) ) |
| 22 |
7 21 19
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( 𝐴 mod 𝑁 ) = 0 ) → ( ( 𝐴 ↑ 𝐵 ) mod 𝑁 ) = ( 𝐴 mod 𝑁 ) ) |
| 23 |
22
|
ex |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 mod 𝑁 ) = 0 → ( ( 𝐴 ↑ 𝐵 ) mod 𝑁 ) = ( 𝐴 mod 𝑁 ) ) ) |
| 24 |
4 23
|
syld |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝑁 ∥ 𝐴 → ( ( 𝐴 ↑ 𝐵 ) mod 𝑁 ) = ( 𝐴 mod 𝑁 ) ) ) |
| 25 |
24
|
3exp |
⊢ ( 𝐴 ∈ ℤ → ( 𝑁 ∈ ℕ → ( 𝐵 ∈ ℕ → ( 𝑁 ∥ 𝐴 → ( ( 𝐴 ↑ 𝐵 ) mod 𝑁 ) = ( 𝐴 mod 𝑁 ) ) ) ) ) |
| 26 |
25
|
com24 |
⊢ ( 𝐴 ∈ ℤ → ( 𝑁 ∥ 𝐴 → ( 𝐵 ∈ ℕ → ( 𝑁 ∈ ℕ → ( ( 𝐴 ↑ 𝐵 ) mod 𝑁 ) = ( 𝐴 mod 𝑁 ) ) ) ) ) |
| 27 |
26
|
adantl |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 𝑁 ∥ 𝐴 → ( 𝐵 ∈ ℕ → ( 𝑁 ∈ ℕ → ( ( 𝐴 ↑ 𝐵 ) mod 𝑁 ) = ( 𝐴 mod 𝑁 ) ) ) ) ) |
| 28 |
1 27
|
mpcom |
⊢ ( 𝑁 ∥ 𝐴 → ( 𝐵 ∈ ℕ → ( 𝑁 ∈ ℕ → ( ( 𝐴 ↑ 𝐵 ) mod 𝑁 ) = ( 𝐴 mod 𝑁 ) ) ) ) |
| 29 |
28
|
3imp31 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∥ 𝐴 ) → ( ( 𝐴 ↑ 𝐵 ) mod 𝑁 ) = ( 𝐴 mod 𝑁 ) ) |