Description: An integer divides a multiple of itself. (Contributed by Paul Chapman, 21-Mar-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | dvdsmul2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∥ ( 𝑀 · 𝑁 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zmulcl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 · 𝑁 ) ∈ ℤ ) | |
2 | eqid | ⊢ ( 𝑀 · 𝑁 ) = ( 𝑀 · 𝑁 ) | |
3 | dvds0lem | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 𝑀 · 𝑁 ) ∈ ℤ ) ∧ ( 𝑀 · 𝑁 ) = ( 𝑀 · 𝑁 ) ) → 𝑁 ∥ ( 𝑀 · 𝑁 ) ) | |
4 | 2 3 | mpan2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 𝑀 · 𝑁 ) ∈ ℤ ) → 𝑁 ∥ ( 𝑀 · 𝑁 ) ) |
5 | 1 4 | mpd3an3 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∥ ( 𝑀 · 𝑁 ) ) |