Metamath Proof Explorer
		
		
		
		Description:  Deduction form of dvdsmultr1 .  (Contributed by Stanislas Polu, 9-Mar-2020)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						dvdsmultr1d.1 | 
						⊢ ( 𝜑  →  𝐾  ∈  ℤ )  | 
					
					
						 | 
						 | 
						dvdsmultr1d.2 | 
						⊢ ( 𝜑  →  𝑀  ∈  ℤ )  | 
					
					
						 | 
						 | 
						dvdsmultr1d.3 | 
						⊢ ( 𝜑  →  𝑁  ∈  ℤ )  | 
					
					
						 | 
						 | 
						dvdsmultr1d.4 | 
						⊢ ( 𝜑  →  𝐾  ∥  𝑀 )  | 
					
				
					 | 
					Assertion | 
					dvdsmultr1d | 
					⊢  ( 𝜑  →  𝐾  ∥  ( 𝑀  ·  𝑁 ) )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dvdsmultr1d.1 | 
							⊢ ( 𝜑  →  𝐾  ∈  ℤ )  | 
						
						
							| 2 | 
							
								
							 | 
							dvdsmultr1d.2 | 
							⊢ ( 𝜑  →  𝑀  ∈  ℤ )  | 
						
						
							| 3 | 
							
								
							 | 
							dvdsmultr1d.3 | 
							⊢ ( 𝜑  →  𝑁  ∈  ℤ )  | 
						
						
							| 4 | 
							
								
							 | 
							dvdsmultr1d.4 | 
							⊢ ( 𝜑  →  𝐾  ∥  𝑀 )  | 
						
						
							| 5 | 
							
								
							 | 
							dvdsmultr1 | 
							⊢ ( ( 𝐾  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝐾  ∥  𝑀  →  𝐾  ∥  ( 𝑀  ·  𝑁 ) ) )  | 
						
						
							| 6 | 
							
								1 2 3 5
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  ( 𝐾  ∥  𝑀  →  𝐾  ∥  ( 𝑀  ·  𝑁 ) ) )  | 
						
						
							| 7 | 
							
								4 6
							 | 
							mpd | 
							⊢ ( 𝜑  →  𝐾  ∥  ( 𝑀  ·  𝑁 ) )  |