Step |
Hyp |
Ref |
Expression |
1 |
|
id |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
2 |
|
znegcl |
⊢ ( 𝑁 ∈ ℤ → - 𝑁 ∈ ℤ ) |
3 |
2
|
anim2i |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∈ ℤ ∧ - 𝑁 ∈ ℤ ) ) |
4 |
|
znegcl |
⊢ ( 𝑥 ∈ ℤ → - 𝑥 ∈ ℤ ) |
5 |
4
|
adantl |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ ℤ ) → - 𝑥 ∈ ℤ ) |
6 |
|
zcn |
⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) |
7 |
|
zcn |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) |
8 |
|
mulneg1 |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ ) → ( - 𝑥 · 𝑀 ) = - ( 𝑥 · 𝑀 ) ) |
9 |
|
negeq |
⊢ ( ( 𝑥 · 𝑀 ) = 𝑁 → - ( 𝑥 · 𝑀 ) = - 𝑁 ) |
10 |
9
|
eqeq2d |
⊢ ( ( 𝑥 · 𝑀 ) = 𝑁 → ( ( - 𝑥 · 𝑀 ) = - ( 𝑥 · 𝑀 ) ↔ ( - 𝑥 · 𝑀 ) = - 𝑁 ) ) |
11 |
8 10
|
syl5ibcom |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ ) → ( ( 𝑥 · 𝑀 ) = 𝑁 → ( - 𝑥 · 𝑀 ) = - 𝑁 ) ) |
12 |
6 7 11
|
syl2anr |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ) → ( ( 𝑥 · 𝑀 ) = 𝑁 → ( - 𝑥 · 𝑀 ) = - 𝑁 ) ) |
13 |
12
|
adantlr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ ℤ ) → ( ( 𝑥 · 𝑀 ) = 𝑁 → ( - 𝑥 · 𝑀 ) = - 𝑁 ) ) |
14 |
1 3 5 13
|
dvds1lem |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 → 𝑀 ∥ - 𝑁 ) ) |
15 |
|
zcn |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) |
16 |
|
negeq |
⊢ ( ( 𝑥 · 𝑀 ) = - 𝑁 → - ( 𝑥 · 𝑀 ) = - - 𝑁 ) |
17 |
|
negneg |
⊢ ( 𝑁 ∈ ℂ → - - 𝑁 = 𝑁 ) |
18 |
16 17
|
sylan9eqr |
⊢ ( ( 𝑁 ∈ ℂ ∧ ( 𝑥 · 𝑀 ) = - 𝑁 ) → - ( 𝑥 · 𝑀 ) = 𝑁 ) |
19 |
8 18
|
sylan9eq |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ ) ∧ ( 𝑁 ∈ ℂ ∧ ( 𝑥 · 𝑀 ) = - 𝑁 ) ) → ( - 𝑥 · 𝑀 ) = 𝑁 ) |
20 |
19
|
expr |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ ) ∧ 𝑁 ∈ ℂ ) → ( ( 𝑥 · 𝑀 ) = - 𝑁 → ( - 𝑥 · 𝑀 ) = 𝑁 ) ) |
21 |
20
|
3impa |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( ( 𝑥 · 𝑀 ) = - 𝑁 → ( - 𝑥 · 𝑀 ) = 𝑁 ) ) |
22 |
6 7 15 21
|
syl3an |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑥 · 𝑀 ) = - 𝑁 → ( - 𝑥 · 𝑀 ) = 𝑁 ) ) |
23 |
22
|
3coml |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ ) → ( ( 𝑥 · 𝑀 ) = - 𝑁 → ( - 𝑥 · 𝑀 ) = 𝑁 ) ) |
24 |
23
|
3expa |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ ℤ ) → ( ( 𝑥 · 𝑀 ) = - 𝑁 → ( - 𝑥 · 𝑀 ) = 𝑁 ) ) |
25 |
3 1 5 24
|
dvds1lem |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ - 𝑁 → 𝑀 ∥ 𝑁 ) ) |
26 |
14 25
|
impbid |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ 𝑀 ∥ - 𝑁 ) ) |